Abstract
The converge of location-aware devices, GIS functionalities and the increasing accuracy and availability of positioning technologies pave the way to a range of new types of location-based services. The field of spatiotemporal data mining where relationships are defined by spatial and temporal aspect of data is encountering big challenges since the increased search space of knowledge. Therefore, we aim to propose algorithms for mining spatiotemporal patterns in mobile environment in this paper. Moving patterns are generated utilizing two algorithms called All_MOP and Max_MOP. The first one mines all frequent patterns and the other discovers only maximal frequent patterns. Our proposed approach is able to reduce consuming time through comparison with DFS_MINE algorithm. In addition, our approach is applicable to location-based services such as tourist service, traffic service, and so on.
위치 기반 장치의 발전과, GIS 기능의 확장 그리고 위치 정보기술들의 정확성과 가용성이 증가함에 따라서 위치 기반 서비스들의 새로운 영역에 대한 새로운 가능성이 나타나게 되었다. 데이터의 시간과 공간 형태에 따라서 정의되는 Relationship에 기인하여 시공간 데이터 마이닝 영역에서 공간에 대한 지식 검색이 증가할 경우 매우 큰 문제에 직면한다. 이 논문에서는 모바일 환경에서 시공간 패턴 마이닝을 위한 알고리즘들을 제안한다. 이동 패턴들은 All_MOP와 Max_MOP 두 개의 알고리즘을 활용하여 생성된다. 이 알고리즘들은 먼저 모든 빈발 패턴들을 탐사한 후 오직 최대의 빈발 패턴만을 탐사한다. 아울러, 제안한 기법과 기존의 DFS_MINE 기법의 수행 시간 비교를 통하여 제안한 기법이 수행시간에서 다소 우수한 것을 나타낸다. 이러한 제안접근법은 관광 서비스, 교통 서비스 등과 같은 위치 기반 서비스 등에 활용할 수 있다.