DOI QR코드

DOI QR Code

STRESS ANALYSIS OF MAXILLARY PREMOLARS WITH COMPOSITE RESIN RESTORATION OF NOTCH-SHAPED CLASSⅤCAVITY AND ACCESS CAVITY ; THREE-DIMENSIONAL FINITE ELEMENT STUDY

쐐기형 5급 와동과 근관와동을 복합레진으로 수복한 상악 소구치에 대한 응력 분석: 3차원 유한요소법적 연구

  • Lee, Seon-Hwa (Department of Conservative dentistry, School of Dentistry, Pusan National University) ;
  • Kim, Hyeon-Cheol (Department of Conservative dentistry, School of Dentistry, Pusan National University) ;
  • Hur, Bock (Department of Conservative dentistry, School of Dentistry, Pusan National University) ;
  • Kim, Kwang-Hoon (Department of Mechanical design engineering, College of Engineering, Pusan National University) ;
  • Son, Kwon (Department of Mechanical design engineering, College of Engineering, Pusan National University) ;
  • Park, Jeong-Kil (Department of Conservative dentistry, School of Dentistry, Pusan National University)
  • 이선화 (부산대학교 치의학전문대학원 보존학교실) ;
  • 김현철 (부산대학교 치의학전문대학원 보존학교실) ;
  • 허복 (부산대학교 치의학전문대학원 보존학교실) ;
  • 김광훈 (부산대학교 공과대학 기계설계공학과) ;
  • 손권 (부산대학교 공과대학 기계설계공학과) ;
  • 박정길 (부산대학교 치의학전문대학원 보존학교실)
  • Published : 2008.11.30

Abstract

The purpose of this study was to investigate the distribution of tensile stress of canal obturated maxillary second premolar with access cavity and notch-shaped class V cavity restored with composite resin using a 3D finite element analysis. The tested groups were classified as 8 situations by only access cavity or access cavity with notch-shaped class V cavity (S or N), loading condition (L1 or L2), and with or without glass ionomer cement base (R1 or R2). A static load of 500 N was applied at buccal and palatal cusps. Notch-shaped cavity and access cavity were filled microhybrid composite resin (Z100) with or without GIC base (Fuji II LC). The tensile stresses presented in the buccal cervical area, palatal cervical area and occlusal surface were analyzed using ANSYS. Tensile stress distributions were similar regardless of base. When the load was applied on the buccal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth with class Ⅴ cavity were slightly higher than that of the tooth without class V cavity. When the load was applied the palatal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth without class V cavity were slightly higher than that of the tooth with class V cavity.

이 연구의 목적은 쐐기형 5급 와동과 근관와동을 복합레진으로 수복한 상악 제2소구치에 대한 응력 분포를 3차원 유한요소법으로 분석하여 평가하기 위한 것이다. 발치된 상악 제2소구치를 이용하여 Micro-CT로 스캔한 후 3D-DOCTOR로 3차원 유한요소 모형을 제작하였다. 제작된 소구치 모형에 근관 와동을 형성하고 쐐기형 5급 와동과 글래스 아이오노머 기저재의 사용 여부를 구분하여 근관 와동을 혼합형 복합레진으로 충전하였다. 협측 교두 또는 설측 교두에 500 N의 하중을 가하고, ANSYS 8.0 프로그램으로 인장 응력의 분포를 분석하여 평가한 결과 베이스 사용유무에 따른 응력 분포의 차이는 없었다. 협측 교두에 하중이 가해질 때, 하중점과 교합면의 중심구, 구개측 백악법랑경계부에 과도한 인장 응력이 집중되었으며, 5급 와동이 없는 경우보다 5급 와동이 있는 경우에 약간 더 높았다. 설측 교두의 협측 경사면에 하중이 가해질 때, 하중점과 교합면의 중심구, 협측 치경부에 과도한 인장 응력이 집중되었으며, 5급 와동이 있는 경우가 5급 와동이 없는 경우보다 약간 더 낮았다.

Keywords

References

  1. Reeh ES, Messer HH, Douglas WH. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J Endod 15:512-516, 1989 https://doi.org/10.1016/S0099-2399(89)80191-8
  2. Helfer AR, Melnick S, Schilder H. Determination of the moisture content of vital and pulpless teeth. Oral Surg Oral Med Oral Pathol 34:661-670, 1972 https://doi.org/10.1016/0030-4220(72)90351-9
  3. Panitvisai P, Messer HH. Cuspal deflection in molars in relation to endodontic and restorative procedures. J Endod 21:57-61, 1995 https://doi.org/10.1016/S0099-2399(06)81095-2
  4. Lewinstein I, Grajower R. Root dentin hardness of endodontically treated teeth. J Endod 7:421-422, 1981 https://doi.org/10.1016/S0099-2399(81)80042-8
  5. Fusayama T, Maeda T. Effect of pulpectomy on dentin hardness. J Dent Res 48:452-460, 1969 https://doi.org/10.1177/00220345690480032201
  6. Pilo R, Cardash HS, Levin E, Assif D. Effect of core stiffness on the in vitro fracture of crowned, endodontically treated teeth. J Prosthet Dent 88:302-306, 2002 https://doi.org/10.1067/mpr.2002.127909
  7. Gwinnett AJ. The morphologic relationship between dental resins and etched dentin. J Dent Res 56:1155-1160, 1977 https://doi.org/10.1177/00220345770560100501
  8. Wolanek GA, Loushine RJ, Weller RN, Kimbrough WF, Volkmann KR. In vitro bacterial penetration of endodontically treated teeth coronally sealed with a dentin bonding agent. J Endod 27:354-357, 2001 https://doi.org/10.1097/00004770-200105000-00012
  9. Trope M, Langer I, Maltz D, Tronstad L. Resistance to fracture of restored endodontically treated premolars. Endod Dent Traumatol 2:35-38, 1986 https://doi.org/10.1111/j.1600-9657.1986.tb00120.x
  10. Trope M, Tronstad L. Resistance to fracture of endodontically treated premolars restored with glass ionomer cement or acid etch composite resin. J Endod 17:257-259, 1991 https://doi.org/10.1016/S0099-2399(06)81862-5
  11. Park JK, Hur B, Kim SK. Stress distribution of class V composite resin restorations: A three-dimensional finite element study. J Kor Acad Cons Dent 33:36-46, 2008 https://doi.org/10.5395/JKACD.2008.33.1.028
  12. Bradley T, William B, Hancock. Examining the prevalence and characteristics of abfraction like cervical lesions in a population of U.S. veterans. J Am Dent Assoc 132:1694-1701, 2001 https://doi.org/10.14219/jada.archive.2001.0122
  13. Park JK Hur B Kim SK. The influence of combining composite resins with different elastic modulus on the stress distribution of class V restoration : A threedimensional finite element study. J Kor Acad Cons Dent 33:184-197, 2008 https://doi.org/10.5395/JKACD.2008.33.3.184
  14. Telles D, Pegoraro LF, Pereira JC. Prevalence of noncarions cervical lesions and their relation to occlusal aspects: a clinical study. J Esthet Dent 12:10-15, 2000 https://doi.org/10.1111/j.1708-8240.2000.tb00193.x
  15. Hansen EK, Asmussen E, Christiansen NC. In vivo fractures of endodontically treated posterior teeth restored with amalgam. Endod Dent Traumatol 6:49-55, 1990 https://doi.org/10.1111/j.1600-9657.1990.tb00389.x
  16. Morin D, DeLong R, Douglas WH. Cusp reinforcement by the acid-etch technique. J Dent Res 63:1075-1078, 1984 https://doi.org/10.1177/00220345840630081401
  17. Rees JS, Jacobsen PH. The effect of cuspal flexure on a buccal Class V restoration: a finite element study. J Dent 26:361-367, 1998 https://doi.org/10.1016/S0300-5712(97)00015-8
  18. Reeh ES, Douglas WH, Messer HH. Stiffness of endodontically-treated teeth related to restoration technique. J Dent Res 68:1540-1544, 1989 https://doi.org/10.1177/00220345890680111401
  19. Steele A, Johnson BR. In vitro fracture strength of endodontically treated premolars. J Endod 25:6-8, 1999 https://doi.org/10.1016/S0099-2399(99)80389-6
  20. Cerutti A, Flocchini P, Madini L, Mangani F, Putignano A, Docchio F. Effects of bonded composites vs. amalgam on resistance to cuspal deflection for endodontically-treated premolar teeth. Am J Dent 17:295-300, 2004
  21. Litonjua LA, Andreana S, Patra AK, Cohen RE. An assessment of stress analyses in the theory of abfraction. Biomed Mater Eng 14:311-321, 2004
  22. Katona TR, Winkler MM. Stress analysis of a bulkfilled class V light-cured composite restoration. J Dent Res 73:1470-1477, 1994 https://doi.org/10.1177/00220345940730081201
  23. Geramy A, Sharafoddin F. Abfraction: 3D analysis by means of the finite element method. Quintessence Int 34:526-533, 2003
  24. Lindehe J, Karring T. Textbook of Clinical Periodontology, 2nd edition, Munksgaard, Copenhagen, p 19-69, 1989
  25. Schroeder HE, Page RC. Periodontal Diseases, 2nd edition, Lea & Fabiger, Philadelphia, p 3-52, 1990
  26. Ichim I, Schmidlin PR, Kieser JA, Swain MV. Mechanical evaluation of cervical glass-ionomer restorations: 3D finite element study. J Dent In press. doi:10.1016/j.jdent 2006.04.003
  27. Yaman SD, Sahin M, Aydin C. Finite element analysis of strength characteristics of various resin based restorative materials in Class V cavities. J Oral Rehabil 30:630-641, 2003 https://doi.org/10.1046/j.1365-2842.2003.01028.x
  28. Oliveira Fde C, Denehy GE, Boyer DB. Fracture resistance of endodontically prepared teeth using various restorative materials. J Am Dent Assoc 115:57-60, 1987 https://doi.org/10.14219/jada.archive.1987.0212
  29. Ray HA, Trope M. Periapical status of endodontically treated teeth in relation to the technical quality of the root filling and the coronal restoration. Int Endod J 28:12-18, 1995 https://doi.org/10.1111/j.1365-2591.1995.tb00150.x
  30. Hofmann N, Just N, Haller B, Hugo B, Klaiber B. The effect of glass ionomer cement or composite resin bases on restoration cuspal stiffness of endodontically treated premolars in vitro. Clin Oral Investig 2:77-83, 1998 https://doi.org/10.1007/s007840050049
  31. Trope M, Langer I, Maltz D, Tronstad L. Resistance to fracture of restored endodontically treated premolars. Endod Dent Traumatol 2:35-38, 1986 https://doi.org/10.1111/j.1600-9657.1986.tb00120.x
  32. Gabel, A.B. American Textbook of Operative Dentistry, 4th edition, McGraw-Hill, London, 1956
  33. Reel DC, Mitchell RJ. Fracture resistance of teeth restored with Class II composite restorations. J Prosthet Dent 61:177-180, 1989 https://doi.org/10.1016/0022-3913(89)90369-7
  34. Morin DL, Douglas WH, Cross M, DeLong R. Biophysical stress analysis of restored teeth: experimental strain measurement. Dent Mater 4:41-48, 1988 https://doi.org/10.1016/S0109-5641(88)80087-3