DOI QR코드

DOI QR Code

Phase Transition and Relaxor Behaviors in the Lead Magnesium Niobate-based Ferroelectrics

Pb(Mg1/3Nb2/3)O3-based 강유전체의 상전이 및 완화특성

  • Published : 2008.03.30

Abstract

Dielectric and pyroelectric properties of relaxor ferroelectric in the PMN-PT solid solution series have been investigated. Features of the diffuse phase transition in PMN-PT system, typical relaxor ferroelectric materials, were studied as a function of temperature and frequency. The transition temperature of the ceramics with PT$\sim$0.325 did not depend on the measuring frequency. This can best realized in a relatively random environment that apparently is provided by PMN-rich complex perovskites, including those containing Pb. The composition with PT>0.35 show the characteristics of a normal single phase ferroelectric material. Thus the studies revealed that the morphotropic phase boundary in the PMN-PT system is in the vicinity of PT$\sim$0.3 and it has a small curvature and as a result the compositions near the morphotropic phase boundary show two phase transitions, rhombohedral$\rightarrow$tetragonal$\rightarrow$cubic, when the samples are heated up to higher temperature. The best optimum compositions are observed near the morphotropic phase boundary.

PMN계 강유전체의 MPB 조성과 공존영역의 확산성을 이해하기 위해 유전 및 초전 특성을 분석하였다. PMN-PT계는 완만한 상전이를 보였으며, 이는 하나의 상유전과 2개의 강유전상이 공존함을 의미한다. 즉, 0.7PMN-0.3PT 조성 부근에서 능면정계와 정방정계의 공존 영역인 조성변태 상경계를 확인하였으며, 이들 조성은 연속적으로 능면정계$\rightarrow$정방정계$\rightarrow$입방정계로 상전이를 하였다. PT>0.325인 조성들은 측정된 진동수 범위에서 진동수 의존성을 보이지 않는 단일상의 강유전 특성을 보였으며, PMN>0.7인 조성들은 큰 진동수 의존성과 확산상전이의 전형적인 완화형 강유전 특성을 보였다. PMN-PT계의 조성변태 상경계 조성들은 우수한 유전 및 초전특성을 나타내었다.

Keywords

References

  1. H. Gui, X. Zhang and B. Gu, J. Phys.: Condens. Matter 8, 1491 (1996) https://doi.org/10.1088/0953-8984/8/10/019
  2. S. W. Choi, T. R. Shrout, S. J. Jang, and A. S. Bhalla, Mater. Lett. 8, 253 (1989) https://doi.org/10.1016/0167-577X(89)90115-8
  3. S. J. Jang, Ph. D. Thesis, The Pennsylvania State University (1979)
  4. W. Wersing, Ferroelectrics 7, 163 (1974) https://doi.org/10.1080/00150197408237983
  5. L. Hahn, K. Uchino, and S. Nomura, Jpn. J. Appl. Phys. 1, 637 (1978)
  6. Y. J. Kim and S. W. Choi, Ferroelectrics 108, 241 (1990) https://doi.org/10.1080/00150199008018764
  7. S. L. Swartz and T. R. Shrout, Mat. Res. Bull. 17, 1245 (1982) https://doi.org/10.1016/0025-5408(82)90159-3
  8. R. L. Byer and C. B. Roundy, Ferroelectrics 3, 333 (1972)
  9. L. E. Cross, Ferroelectrics 76, 241(1987) https://doi.org/10.1080/00150198708016945
  10. L. E. Cross, Ferroelectrics 151, 305(1994) https://doi.org/10.1080/00150199408244755
  11. Z. Y. Cheng, R. S. Katiyar, X. Yao, and A. Guo, Phys. Rev. B55, 8165 (1997)
  12. Z. Y. Cheng, L. Y. Zhang, and X. Yao, J. Appl. Phys. 79, 8625 (1996)
  13. Z. Y. Cheng, L. Y. Zhang, and X. Yao, J. Appl. Phys. 80, 5518 (1996)
  14. Z. Y. Cheng, R. S. Katiyar, X. Yao, and A. Guo, Phys. Rev. B55, 8165 (1997)
  15. Z. Y. Cheng, R. S. Katiyar, X. Yao, and Z. L. Wang, Philos. Mag. B75, 257 (1998)
  16. F. Chu, I. M. Reaney, and N. Setter, J. Am. Ceram. Soc. 78, 1947 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08915.x
  17. D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, J. Appl. Phys. 68, 2916 (1990) https://doi.org/10.1063/1.346425
  18. B. Vugemeister and M. Glinchuck, Sov. Phys. JETP 52, 482 (1980)
  19. D. Viehland, S. J. Jang, and L. E. Cross, J. Appl. Phys. 69(1), 414 (1991) https://doi.org/10.1063/1.347732
  20. V. E. Zubkus and S. Lapinskas, J. Phys.: Condens. Matter 2, 1753 (1990) https://doi.org/10.1088/0953-8984/2/7/007
  21. I. W. Chen, P. Li, and Y. Wang, J. Phys. Chem. Solids 57(10), 1525 (1996) https://doi.org/10.1016/0022-3697(96)00023-6
  22. K. L. Nagi, A. K. Jonscher, and C. T. White, Nature 277, 185 (1979) https://doi.org/10.1038/277185a0
  23. B. Noheda, D. E. Cox, G. Shirane, J. Gao, and Z. G. Ye, Phys. Rev. B66, 051104 (2002)
  24. D. L. Corker, A. M. Glazer, R. W. Whatmore, A. Stallard, and F. Fauth, J. Phys.: Condens. Matter 1, 6251 (1998)
  25. J. M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert, and G. Calvarin, Phys. Rev. B65, 064106 (2002)
  26. A. K. Sing h and D. Pandey, J. Phys.: Condens. Matter 13, L931 (2001) https://doi.org/10.1088/0953-8984/13/48/102

Cited by

  1. Recent advances in perovskites: Processing and properties vol.43, pp.4, 2015, https://doi.org/10.1016/j.progsolidstchem.2015.09.001