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ON THE WEAK FORMS OF CHOICE IN TOPOI

I Sung Kim

ABSTRACT. In topoi, there are various forms of the axiom of choice such as (ES),
(AC) and (WO). And also there are various weak forms of the axiom of choice such
as (DES), (IAC) and (ASC). First we investigate the relation between (IAC) and
(ASC), and then we study the relation between (AC) and (WO). We get equivalent
forms of the axiom of choice in a well-pointed topos.

1. INTRODUCTION

There are various forms of the axiom of choice in Atopoi:
(ES) Every epimorphism is a section.

(AC) For any noninitial object A and f : A — B, there exists a morphlsm g:
B — A such that fogo f=f.

(WO) For any Pand g: U — QF, if there exist « : V —» U and p: V — P such
that (ga,p) factors through ep— QF x P, then there exists ag : Vo — U
and pp : Vp — P such that (gag, po) factors through €p, and such that for
all 3: W — Vpand all p; : W — P, if (qaof3, p1) factors through €p, then
(poB, p1) factors through a monomorphism P, — P x P.

Also there are various weak forms of the axiom of choice in a topos:
(DES) Every decidable epimorphism is a section.
(ASC) Every separated epimorphism of £ is a section.
(IAC) Every object of £ is internally projective.

Mawanda (7] showed that (ES), (DES) and (ASC) are equivalent in a well-pointed
topos. Goldblatt [4] showed that (ES) and (AC) are equivalent in a well-pointed
topos. In this paper we show that (IAC) is not equivalent to (ASC) in some topoi,
but (IAC) is equivalent to (ASC) in a well-pointed topos. Also we show that (AC)
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is not equivalent to (WO) in some topoi, but (AC) is equivalent to (WO) in a well-
pointed topos. Therefore we know that (ES), (AC), (WO), (DES), (ASC) and (IAC)
are equivalent in a well-pointed topos.

2. PRELIMINARIES

In this section, we state some definitions and properties which will serve as the
basic tools for the arguments used to prove our results.

Definition 2.1. An elementary topos is a category & that satisfies the following:
(T1) & is finitely complete,
(T2) € has exponentiation,
(T3) £ has a subobject classifier.

(T2) means that for every object A in &, the endofunctor (—) x A has its right
adjoint (—)A. Hence for every object A in &, there exists an object B4, and a
morphism evy : BA x A — B, called the evaluation map of A, such that for any Y
and f : Y XA — Bin £, there exists a unique morphism g such that evqo(gxia) = f;

YxA —1 B

QXiAl lis
BAxA 24, B
And subobject classifier in (T3) is an £-object €, together with a morphism
T : 1 — Q such that for any monomorphism h : D — C, there is a unique morphism
xn : C — , called the character of h : D — C which makes the following diagram
a pull-back;

D——!———~>1

n| 17
c 250
Example 2.2. If M is a monoid with two elements, then the category Ms — Set is
a topos.

Consider (Ms,0,e) where M2 = {e,a} and o is defined by ece = ¢, eoca =
aoe=aoa=a. Then M; is a monoid with identity e, in which @ has no inverse.
The set Ly of left ideals of Ms has three elements, that is, Mz, @, and {a}. Thus in
M, — Set, 2 = (Lg,w), where the action w : My X Ly — Ly is defined by
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w(m, B) = {nlnom € B}.
In fact, M — Set is a topos for any monoid M (see [4]).

Definition 2.3. We say that supports split (SS) for every £-object A in the topos
£ if the epic part of the epi-monic factorization of ! : A — 1 has a right inverse.

Lemma 2.4. The topos My — Set satisfies (SS).

Proof. Since supports split if and only if every subobject of the terminal object 1
= {x} is a projective object, we only need to show that the terminal object is a
projective object. Let f : (X,9) — (Y, ) be an epimorphism in M — Set where
Y:MyxX — X and ¢: My xY — Y are actions of Ms on X and Y, respectively.
By the property of Ms, we have y(e,z) =z forallz € X. Let h: {*x} - Y be a
morphism in My — Set where v : My x {x} — {*} is a trivial action. Since f is an
epimorphism, for h(x) € Y there is a ' € X such that f(z') = h(x). We define a
morphism k : {*} — X by k(x) = ¢(a,z’). Then k(v(n,*)) = ¥(n, k(*)) = k() and
f o k() = f((a,2)) = §(a, £(2')) = d(a, h(x)) = h(x). O

Definition 2.5. We say that £ satisfies the axiom (SG) if the subobjects of 1 =
{*} in € form a class of generators.

Definition 2.6. A topos £ is called Boolean if for every object D in &, (Sub(D), €)
is a Boolean algebra where Sub(D) is the class of monomorphism with common
codomain D, and g € f if there exists a morphism h : B — A such that foh =g
where f: A — D and g : B — D are monomorphisms.

Lemma 2.7 ([4]). For any topos £, the following statements are equivariant:

(1) &€ is Boolean.

(2) Sub(Q) is a Boolean algebra.

(3) T:1— Q has a complement in Sub(f).

(4) L:1 — Q is the complement of T in Sub(Q2).
(5) TUL ~1q in Sub(Q).

(6) & is classical.

(7) 41:1 - 141 is a subobject classifier.

Example 2.8. If M is non-trivial monoid and not a group, then the category
M — Set is a non-Boolean topos.

For the proof see Goldblatt [4], Ebahimi and Mahmoudi [3] and Madanshekaf
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and Tavakoli [6].
Lemma 2.9. In any topos €, (ES) implies (SG).

Proof. Let f,g: X — Y be two distinct morphisms. Then there is an equalizer (E, e)
of f and g. Since a topos satisfying (AC) is Boolean, there is the complement of E,
denoted by —F, such that m : =F — X is a monomorphism. Consider o1(—F) where
o is a support functor and 1 = {*} is a terminal object. Then o1(—FE) is nonzero
and s : =F — 01(~FE) is an epimorphism. By hypothesis, there is a morphism
t: 01(~E) — —FE such that sot = i,,(_g). For mot: g1(—~E) — X, the equalizer
of fomotand gomotis (mot)*(E — X) which is isomorphic to 0 — o1(—FE)
where 0 is an initial object. Therefore fomot#gomot. g

Definition 2.10. A topos is called well-pointed if it satisfies the extentionality
principle for morphisms, i.e., If f,g : A — B are a pair of distinct parallel morphisms,
then there is an element a: 1 — A of A such that foa # goa.

Lemma 2.11 ([7]). In a well-pointed topos, (ES), (DES) and (ASC) are equivalent.

3. MAIN REsSuULTS

In this section, we show that (IAC) is not equivalent to (ASC) in some topoi, but
(IAC) is equivalent to (ASC) in a well-pointed topos. Also we show that (AC) is not
equivalent to (WO) in some topoi, but (AC) is equivalent to (WO) in a well-pointed
topos. Therefore we know that (ES), (AC), (WO), (DES), (ASC) and (IAC) are
equivalent in a well-pointed topos.

Theorem 3.1. There is a topos satisfying (IAC) and not satisfying (ASC).

Proof. Consider the topos G — Set where G = {e, g} is a group with identity e.
We claim that, for any object X € G — Set, ()X : G — Set — G — Set preserves
epimorphisms. Let h : A — B be an epimorphism in G — Set. Since the forgetful
functor U : G — Set — Set preserves epimorphisms, U(h) : U(A) — U(B) is an
epimorphism in Set. Since U(h)VX) : U(4)VX) - U(B)YX) is an epimorphism in
Set and the forgetful functor U : G — Set — Set preserves exponentials, U(h%) :
U(AX) — U(B¥X) is an epimorphism in Set ([4]). Since the forgetful functor U :
G —Set — Set retracts epimorphisms, hX : AX — BX is an epimorphism in G —Set.
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Thus G — Set satisfies (IAC). But this topos does not satisfy (ASC) because there
is not an absorbing element in G ([7]). O

Proposition 3.2. In a topos € which satisfies (SS), (IAC) implies (ASC).

Proof. Let f : X — Y be an epimorphism in £. Since £ has pull-backs, there is a
pull-back functor Y* : £ — £/Y defined by Y*(W) =W x Y — Y such that makes
the following diagram a pull-back.

WxYy 2, w

g !

Y — 1

Since £ is a finitely complete category with exponentiation, a pull-back functor
Y*: & — £/Y has a right adjoint Iy : £/Y — & for every morphism Y with
codomain 1. Since Y is internally projective (Johnstone [5]), f¥ : X¥ — YV is
an epimorphism. Hence there is a morphism u : IIy(f) — 1 which is a pull-back
of f¥ : XY — YY. Also, by the property of pull-back, u : IIy(f) — 1 is an
epimorphism. By hypothesis, u : ITy(f) — 1 has a right inverse v : 1 — IIy (f) such
that w o v = i;. Since the pull-back functor has a right adjoint, there is a morphism
w : Y*(1) — f such that f o w = iy. Thus every epimorphism in £ has a right
inverse. Thus £ is Boolean (Diaconescu [2]). Hence every separated epimorphism is
a section by Lemma 2.7.(4). Therefore £ satisfies (ASC). O

Theorem 3.3. There is a topos satisfying (ASC) and not satisfying (1AC).

Proof. Consider the topos My — Set where My = {e,a} is a monoid with identity
e, in which a has no inverse. Since a is an absorbent element in My, My — Set
satisfies (ASC) (Mawanda [7]). But this topos does not satisfy (IAC). Assume
M; — Set satisfies (IAC). By Lemma 2.4, M> — Set satisfies (ES). Also, by Lemma
2.9, M, — Set satisfies (SG). But this is a contradiction. Since we can construct the
two different morphism ¢,i : {X, 9} — {X, ¢} where X = {z,y}, c(z) = c(y) = =
and i(z) = z,i(y) = y. Alsoy: My x X — X is an action of M5 on X with ¢(e,z) =
z,Y(e,y) = y,¥(a,z) = z,9(a,y) = z and ¢ : My x X — X is an action of M3 on X
with ¢(e,) = z,8(e,y) = 3,4(a, 7) = 7,9(a,y) = y. Then ¢,i : {X, ¥} — {X, ¢}
are action preserving morphisms. And let h : {{x},v} — {X,¢} where h(x) = z
and v : My x {¥} — {x} with trivial action. Since h(*) = z is the unique action

preserving morphism, we have coh =io h. O
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Proposition 3.4. In a Boolean topos £, (ASC) implies (1AC).

Proof. By Lemma 2.7 and hypothesis, £ satisfies (ASC) if and only if every epimor-
phism in £ is a retraction. Let e : X — Y be an epimorphism in £. We claim
that, for any object K in £, eK : XX — Y¥ is an epimorphism. For any morphism
s: K — Y in &, since the epimorphism e : X — Y is a retraction by hypothesis,
there is a morphism r : Y — X in € such that eor = iy. Hence we get a morphism
ros: K — X in € such that e (ros) = eoros = s. Thus the morphism
eX : XX - YK is an epimorphism. O

Proposition 3.5 ([7}). There is a topos satisfying (AC) and not satisfying (WO).
Proposition 3.6. In a Boolean topos €, (AC) implies (WO).

Proof. Let Xo be a noninitial object in £. By (AC), there is a morphism 1 :
NXy — Xp such that 9 o g; € g/ where NXj is the object of noninitial subobjects
of Xo with the usual ordering, g; : 1 — NXj is a morphism and ¢} : X{ — Xp
is a monomorphism ([8]). By hypothesis, for go such that go(x) = Xo we get that
~(% o go) = g1 which is the complement of (1) o gg) in go, where the pullback of
1 o go and —(¢ o go) is the initial object, —(¢) 0 g1) = go which is the complement of
(¥ 0 g1) in g1, where the pullback of 1) o gy and —(3 o g1) is the initial object, etc.
Generally, we get that —(v o gn—1) = g which is the complement of (¢ 0 g,—1) in
gn-1, where the pullback of ¥ o gp,—; and —(4 o gn—1) is the initial object. That is,

0O — 1

L Lo

1 - (¢°go) XO

is a pullback square.
Thus we construct ¢ : X9 — NXp such that Im(¢) is a subobject of NXp

consistsing of go, —(?¥ o go), —(¥ 0 g1), ... and —(¢) 0 gn—1), where —(Y 0 gp—1) is a
noninitial object, and ¥ o ¢ = ix,. Then Im(¢) is a linear ordered with minimal
choice. Since ¢ is a monomorphism, Xy has an ordering with minimal choice. =~ O

Proposition 3.7 ([7]). There is a topos satisfying (WO) and not satisfying (AC).
Proposition 3.8. In ¢ well-pointed topos £, (WO) implies (AC).

Proof. Since every morphism is epi-monic factorizablé in &, for any morphism f :
A — B in &, there exist an epimorpmism e : A — X and a monomorphism m :
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X — B such that f = moe. By hypothesis, there exists a morphism ¢ : B — X
such that ¢t om = ix. We only show that there is a morphism s: X — A such that
f=/fo(sot)of=f. Sincee: A — X is an epimorphism, there is a morphism
g : X — QA which is the interpretation of the term {ale(a) = z}. By definition of
(WO), we can find an epimorphism r : V — X and a morphism n : V — A such
that n is a minimal choice of gr. Since every epimorphism is a coequalizer, there are
morphisms u,v : W — V such that the following square

w25V
vJ' l
V — X
r
commutes.

Thus we get gorov = gorowu. Also nu, nv are both minimal choice of
gorov = gorou. By definition of (WO), we have nu = nv. Since every epimorphism
is a coequalizer, there is a morphism s:X — A such that sor = n. Also there is a
morphism ¢ : X —€4 such that kos = ¢ where k: A —€4 and €4 is the subobject
classified by ev : @4 x A — Q. Then we have (g, s) = loc = lokos = (goeos, s) where
l: €4— Q4 x A. Since g is a monomorphism, we have f = f o (sot)of=f. O

Corollary 3.9. In a well-pointed topos £, (ES), (AC), (WO), (DES), (ASC) and
(IAC) are equivalent.
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