Exopolysaccharide (EPS) Production by Lactobacillus paracasei KLB58 in Modified Medium under Different Growth Conditions

다양한 배지 환경이 Lactobacillus paracasei KLB 58의 Exopolysaccharide (EPS) 생산량에 미치는 영향

  • Lee, Choong-Young (Department of Marine Science and Biotechnology, Inha University) ;
  • Jeon, Jeong-Min (Department of Marine Science and Biotechnology, Inha University) ;
  • Lee, Hae-In (Department of Marine Science and Biotechnology, Inha University) ;
  • Kim, Min-Hee (Department of Marine Science and Biotechnology, Inha University) ;
  • Jung, Mi-Kyoung (Department of Marine Science and Biotechnology, Inha University) ;
  • So, Jae-Seong (Department of Marine Science and Biotechnology, Inha University)
  • 이충영 (인하대학교 공과대학 해양과학 생물공학과) ;
  • 전정민 (인하대학교 공과대학 해양과학 생물공학과) ;
  • 이해인 (인하대학교 공과대학 해양과학 생물공학과) ;
  • 김민희 (인하대학교 공과대학 해양과학 생물공학과) ;
  • 정미경 (인하대학교 공과대학 해양과학 생물공학과) ;
  • 소재성 (인하대학교 공과대학 해양과학 생물공학과)
  • Published : 2008.02.29

Abstract

Various probiotic Lactobacillus spp. are known to produce exopolysaccharide (EPS) which has potential health promoting functionality. A Lactobacillus paracasei strain producing EPS was isolated from healthy human. This strain, named L. paracasei KLB58, was grown on modified MRS medium. Experiments were conducted under various growth conditions to optimize the EPS production. Our study showed that incubation temperature played an important role in EPS production. When incubation temperature was changed from $37^{\circ}C$ to $25^{\circ}C$, the increase of EPS production (28.1 mg/ml) was the highest in our experiment. The type of carbon source in the medium also affected EPS production. Galactose was the most effective for EPS production among the carbon sources examined. Using galactose, glucose, lactose and sucrose, the amount of released EPS was 38.9 mg/ml, 35.6 mg/ml, 21.76 mg/ml and 16.9 mg/ml, respectively. However, acidity in growth medium inhibited EPS productivity due to the low growth yield. When grown at pH 4, L. paracasei KLB58 could only produce EPS of 14.6 mg/ml. When the initial amounts of nitrogen and carbon sources were examined, EPS production was not significantly affected by nitrogen source while carbon source affected considerably.

EPS 생산량이 다양한 환경 인자 요소에 의해 달라진다는 것이 여러 연구를 통해 알려졌다(1, 5, 10, 11). 본 연구에서는 환경인자를 다음과 같은 요소 (온도, 탄소원, pH, 질소원과 탄소원)로 변화시켜 보면서 관찰하였다. 다양한 환경인자 중 EPS 생산량에 가장 큰 영향을 준 요소는 온도였다. 온도를 $37^{\circ}C$에서 $25^{\circ}C$로 낮추었을 때 EPS 생산량은 2배 이상 증가하는 것을 관찰할 수 있었다(Fig. 3(A)). 탄소원으로 galactose를 사용했을 때 EPS 생산이 가장 효율적이었으나(Fig. 2(A)), 수율 면에서는 lactose를 이용했을 때 가장 효과적이었다(Fig. 2(B)). 그러나 lactose를 사용했을 때 L. paracasei KLB 58의 성장이 매우 저조하였다. 이에 대한 균체량을 증가시킬 수 있는 방법을 모색한다면, EPS 생산하는데 있어 lactose가 휼륭한 탄소원으로 사용될 가능성이 있다고 여겨진다. 반면에, 질소원의 양을 증가시켰을 때의 EPS 생산량의 증가는 거의 변함이 없었다. 5가지 환경요소 (온도, 탄소원, pH, 질소원과 탄소원)를 변화시켜본 인자 중 질소원의 양을 변화시켰을 때 EPS 변화가 가장 적었고, 탄소원의 증가는 EPS 생산의 증가를 가져왔다.

Keywords

References

  1. Andrew, L., Y. Gu, V. Marshall (2001), Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria, Biotechnol Adv. 19, 597-625 https://doi.org/10.1016/S0734-9750(01)00084-2
  2. Degeest, B. and L. D. Vuyst (1999), Indication that the nitrogen source influences both amount and size of exopolysacchrides produced by Strepeococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium, Appl Environ Microbiol. 65, 2863-2870
  3. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith (1956), Colorimetric method for determination of sugars and related substances, Anal. Chem. 28, 350-356 https://doi.org/10.1021/ac60111a017
  4. Hassan, A. N., R Ipsen, T. Janzen, K. B. Qvist (2003), Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides, J. Dairy Sci. 86, 1632-1638 https://doi.org/10.3168/jds.S0022-0302(03)73748-5
  5. Lin, E.-S., Y.-H. Chen (2007), Factors affecting mycelial biomass and exopolysaccharide production in submerged cultivation of Antrodia cinnamomea using complex media, Bioresource Technol. 98, 2511-2517 https://doi.org/10.1016/j.biortech.2006.09.008
  6. Maite, D., A. Munduate, A. Perea, and A. Irastorza (2003 ), Exopolysaccharide production by Pediococcus damnosus 2.6 in a semidefined medium under different growth conditions, Int. J. Food Microbiol. 87, 113-120 https://doi.org/10.1016/S0168-1605(03)00060-6
  7. Petry, S., S. Furlan, M.-J. Crepeau, J. Cerning, and M. Desmazeaud (2000), Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium, Appl Environ Microbiol. 66, 3427-3431 https://doi.org/10.1128/AEM.66.8.3427-3431.2000
  8. Pham, P. L., I. Dupont, D. Roy, G. Lapointe, and J. Cerning (2000), Production of exopolysccharide by Lactobacillus rhamnosus Rand analysis of its degradation during prolonged fermentation, Appl. Environ. Microbiol. 66, 2302-2310 https://doi.org/10.1128/AEM.66.6.2302-2310.2000
  9. Pierre, M., S. Bozonnet, C. Albenne, G. Ja, R.-M. Willemot, and R.-S. Magali (2001), Homopolysaccharide from lactic acid bacteria, Int. dairy J. 11, 675-685 https://doi.org/10.1016/S0958-6946(01)00113-3
  10. Shih, I.-L., K.-L. Tsai, and C. Hsieh (2007), Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris, Biochem. Eng. J. 33, 193-201 https://doi.org/10.1016/j.bej.2006.10.019
  11. Tallon, R., P. Bressollier, and M. C. Urdaci (2003), Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56, Res. Microbiol. 154, 705-712 https://doi.org/10.1016/j.resmic.2003.09.006
  12. Van, D. B. D. J. C., G. W. Robijn, A. C. Janssen, M. L. F. Giuseppin, R. Vreeker, J. P. Kanerling, J. F. G. Vliegenthart, A. M. Ledeboer, and C. T. Verrips (1995), Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide, Appl. Environ. Microbiol. 61, 2840-2844
  13. Van Kranenburg, R. I., C. Boels, M. Kleerebezem, and W. M. De Vos (1999), Genetics and engineering of microbial exopolysaccharides for food: Approaches for the production of existing and novel polysaccharides, Curr. Opin. Biotech. 10, 498-504 https://doi.org/10.1016/S0958-1669(99)00017-8