ARSI A ALF R o] A B A A 4 50084

2 AL = Aozl w3l
(Translation of Separable Systems into
the Lambda Calculus)

t
WA P

(Sugwoo Byun)

£ o B dFdie e 2= ¥ A AA(TRS, Term Rewriting Systems)9) && ¥tk A4k
Hoz Igdste HWE Wy S AAFch Bshmel #/% ol wel H¥sH & Hus zte g A2
g ¥ AshieE wgd & USE B X3 Bohm £F F79 EAS HEFLEHN, o] HE
2 OZE E2 ¥ /MM A2Dg 39T 4 2o TRSY ‘9v] e ¥ES $UF I gog &)y
g I=E Foh

F19= : 294, 3 AN A2", Bshm E], g} A4y, 6

Abstract This research presents an translation technique of encoding rewrite rules with patterns
into the lambda calculus. We show, following the theory of Béhm’s separability, rewrite rules with
distinctive patterns, called separable systems, can be translated into the lambda calculus. Moreover,
according to the property of Bohm egquivalence classes, we can also encode rewrite systems with
default rules, which aliows to interpret some of 'undefined’ terms of TRSs as an identified lambda
term.

Key words : Separability, Term Rewriting Systems, Bohm trees, Lambda Calculus, Translation

1. Introduction

In this paper, we discuss the translation of TRSs
(term rewriting systems) into the lambda calculus,
which was raised as an open question [1]. An
essential distinction between two systems is that
TRSs use function symbols while the lambda
calculus does not. We show pattern matching of
rewrite systems can be represented by the lambda
calculus.

In lambda-definability, it is already known that

- This work was supported by Kyungsung University in 2005.

t 324 AddgE AFRPEEY 35
swhyun@ks.ac.kr
RS 0 20073 12€ 11
AR @ 20089 19 10Y

Copyright @2008 &= X33 1 711 B&o} B £2Q 3+, o] A%E
o] A Ee 45 A SAHE Z2 g A2 AZE kv o)
o, AL 3P FHoE AR F glon A FolA)d £ 39 2XE
=] BAsoF Puitt. of 2] BHoz BA WX, 2% AE § 2E /Y
o] AHEBAE Fhe B 4ol ddtede Al 5718 A v 42 X Esor @
yrh

FEAH =LA A2 @ o] A35F AM4E(2008.4)

lambda-definable functions should be sequential so
that non sequential functions such as {Por(x, T) —
T, Por(T, x) — T, Por(F, F) — F} cannot be
defined in the lambda calculus [2]. Another source
of lambda-definability is Bohm'’s separability; given
. Xa}, the
lambda term F satisfying equations FX; = Y; ..
FX, = Y, for arbitrary lambda terms Y, .., Y, is
decided effectively [3]. Following the Béhm’s sepa-
rability, we define separable systems, a TRS ver-

a set of distinct lambda terms (X,

sion of sepai”abﬂity, and show separable systems
can be encoded into the lambda-calculus, following
faithfully Bohm's separability.

This paper extends my previous work [4] by
upgrading its exposition and adding the case of
default rules, used widely in the functional pro-
gramming with some strategy of rule searching.
Default rules also are useful in identifying 'undefined’
terms to encode them.

The paper is organized in the following way;
Section 2 introduces Bohm trees, Béhm-out trans—

e AAEe g Aayoso Wg 179

formation, and separability in the lambda calculus,
Section 3 defines separability in TRS following the
Section 4
presents encoding in detail together with examples

separability of the lambda calculus,

including default rules and the correctness of
translation, and finally Section 5 comments related
works and the meaning of this work. We assume
readers are familiar with the lambda calculus and
the orthogonal term rewrite systems.

2. Béhm Trees and B6hm-Out
Transformation

2.1 Bshm trees
In this section, we brief Béhm trees and Bshm-
out transformation introduced at Section 10.3 and
10.4 of [5). In the lambda calculus, the notion of
unsolvability is based on the hnf (head normal
form) rather than normal form. Given a lambda
term M, BT(M), called the Boéhm tree of M, is
defined inductively based on hnf, BT(M) =1 (null)
if M has no hnf, and BTYM) = Axi.xeyBT(Mi)...
BT(M,) if M is of the form Axi.xeyM.M. The
set O(BT(M)) of occurrences (or positions) of BT
(M) is defined as follows; if BTYM) =., O(BT
(M)) = & BT(M) has only one occurrence for the
root. If BIYM) = Ax;.xxyBIVM;)..BIYM,), XBTYM))
={e} U fi-a; | I<i<n and a@,€ O(BT(M))).
BT(M)a, a subtree at an occurrence @ of BT(M),
is also defined inductively as follows; BT(M). =
BT(M) if a = ¢ and BT(M)a = BT(M)a if
BT(M) = Axt.xeyBT(M)..BT(M,). and a = |- a,.
Definition 1 (Bshm equivalence ~)
(1) Let two lambda terms M = Axi..xnyMi.Mn
and N = Az..2,.y’N..Np be in hnf. Then, M
is equivalent to N, written M ~ N, iff y = y’
andn-m=n"-m'
(2) Let A and B be Bohm trees. Then A~q B iff
As ~ Ba
(3) M ~. N iff BTI(M) ~. BT(N).
(4) Al @ denotes the label at the node @ in BT(A).
For example, Ax.xM ~ AyzyMN, but AxyM =A
yyM.
Definition 2 (1) An occurrence @ is useful for 7
if VMeT7, acO(BT(M)) and M. is not empty.
and IMNET M »=. N.

(2) T is distinct if T consists of one elements, or
some occurrence a is useful for 7 and ~a
equivalence class of elements of 7 are all
distinct.

(3) Two lambda terms M and N agree up to a if
vp<a, M|B = N|G&

Church numerals, written as n for n€N inclu-
ding 0, have some good properties. Consider § = A
fxx, 1 = AMxx, 2 = AMxfe, and n = Afxf'x, which
are normal forms. From the view of Bohm trees,
we can observe that 0 = [~ 2 ~ 3 ... Also 1
12 ~13 ~14...and2 #1113 ~1.14 ...

Lemma 3 For every nEN including 0, there
exists a useful path @ = I"= 1 -1 - - -1, n-times
repeated occurrences of I, such that n-/ and n
agree up to @, n =, ntl, and ntl ~. pt2 ~4 nt3

Hence, every set of Church numerals is
distinct.

Definition 4 Let 7 = (M., M,} be a set of
T is called separable if V
A FM, =

closed lambda terms.
Ni..Np€A JFEA F M; = N; A ..
Np.

Theorem. 5 [5] In the lambda calculus, 7 is
distinct = 7 is separable.

2.2 Boshm-out transformation

In this subsection, we introduce a transformation
function #, called a- 7 -faithful transformation, follo-
wing Definition 10.3.12 of [5]. Suppose an occur—
rence a is given and two lambda terms M and N
agree up to a Applying # to the BT(M), written
as M’, has the following condition; M ~. N iff M"
~ N", and Mla is defined iff M" solvable. The
main condition of z is that it should preserve the
definedness/undefinedness of original terms.

Corrado Bshm showed that, given an set 7 of
distinctive lambda terms, a lambda term F, satis-
fying equations at Definition 4, exists. Moreover,
such F is a a- T-faithful transformation and can be
obtained by a constructive proof of Theorem 5. In
this subsection, we define the constructive proof as
an algorithm. Roughly F can be constructed as
follows.

Suppose two lambda terms M and N are distinct,
including subterms such that BTYM) and BT(N)
agree up to @ and M -=, N. The transformation 7
takes out subterms at @ of BT(M) and BT(N)

180 AEASGI A ALY R)& A B A A 4 Z(20084)

and let them be M« and N a, respectively. M«
and N'e are substitution instances of M« and Na,
respectively. z preserves both ~, and . equi-
valence classes. As M ~=o N, M« » N'a holds.
Then, to complete equations of Definition 4, the
next phase of 7 is to decide appropriate RHS
(right-hand sides) of equations.

There are two main elementary functions of U%
= Axp.Xaxi, called selection and P, = Axi.xn
<X1..Xn> = AXL..XnXn+1.Xn+1X1...Xn, called permutation.

By . defined at Algorithm 6, given @ and 7,
we find out a context ()™ = [] L; .. L such
that M™ = BT(M)".. 7, is a finite compositions of
three basic transformations #;, 7, and 7.

Algorithm 6 (Bshm-out transformation).

Let 7 be a set of lambda terms and VME T a
E€O(BT(M)). The Bshm out transformation 7. is a
(repeated) sequence of %, 7%, and #; defined as
follows.

(1) 7 - transform 7 into A-free form, having no A
-abstraction at the root.
(W =()xi - xa

where xi.. x» are new variables and n = max(n; |

ni is the number of head abstractions of M.Ehnf

(T
(2) 7, - transform 7Y into original form; if M

)l;.yxd, then y&FV(74).
() =()a © apep, [y = Ppl,
where y is the head variable of an ~ equivalence

class in 7Y p is the maximum number of
success terms following v at 7% and a
ap+1 are new variables. After performing 7, every
~ equivalence class has a distinct head variable
g (1<i< p+l). :
(3) #; - select one of following success terms.
()°=0)(z:=UY],
where z is a head variable, n is the number of
terms following 2, and j is the prefix of 2 such
that a = j - a’.
(4) Repeat the above procedures with (((7)¥)™)*
until @’ becomes empty.
7, is the composition of sequences of 7,
O ={lxxma - -
L
All transformations terminate in finitely many

7 dp+I II:Y = Pp] {Z =

steps since a is finite.

3. Separability in TRS

We assume familiarity with orthogonal TRSs
[6,7]. Principal function symbols of LHS (left-hand
sides of rules) are called operators and other
function symbols constructors. A term t is an
operator term if the leftmost symbol of ¢ is an
operator. A constructor term is a term having no
Orthogonal systems are
called constructor systems if LHS do not include a

operators and variables.

proper operator subterm. If the principal function
symbol of ! is F in a rewriting rule ! — r, this
rule is called an F-rule.

The set O(t) of occurrences (or positions) of a
term tETer(2) is defined by induction on the
structure of t as follows: O(t) = (¢} if t is a
variable, and O(t) = ¢ U {i-u | 1<i<n and ue
o)}, if t is of the form F(t;, ..
occurrence of a term ¢, tlu denotes the subterm of

, ta). If uis an

t at u.

Separable systems, their properties, and their
transformation have been introduced in my previous
work [10]. Separable systems, a class of Orthogonal
TRSs,

systems, called a flat system, a constructor system

can be transformed into a very simple
having at most one constructor in LHS of the
rules.

Theorem 7 [10] Let # be a TRS. R is
separable if and only if there exists a flattening of
transformation that # transformed 1is also
separable.

Example 8 [10] Consider the following separable
systems.

H(G(A, A, x), A) = b

H(G(A, x, A), B) = t;

G(B, B, B) — t2

These rules can be transformed by flattening as
follows

H(Ga(x, y), z) — Hacalx, vy, z)

Haca(x, y, A) — Hoalx, y)

Hacalx, y, B) — Hea(x, y)

Heal(A, x) = t

Hep(x, A =t

Gg(B, x) — Ggg(x)

Gpr(B) — t2

G(A, x, y) — Galx, y)

£ Alawe g Aozl v 181

G(B, x, y) — Gp(x, v).

The original H-rules at Example 8 is not a
constructor system as they have an operator G in
LHS while their transformed rules are constructor
systems - Ga is a fresh constructor introduced in
transformation. Flat systems can be encoded
lambda and then

separable systems also can be via flattening.

directly into the calculus,

Separability implies strong sequentiality, but not
vice versa. Also, Strong sequentiality with index
transitivity implies separability, but not vice versa;

Strong Sequentiality = Separability = Strong
Sequentiality with Index Transitivity

If we are confined to constructor systems, all
those three are the same. In constructor systems,
the notion of distinction is directly related to that
of the lambda calculus. According to [8), at least
the proper subterms of LHS should be meaningful.

Based on this notion, we construct separation trees

in orthogonal TRSs.

Definition 9 Let Pr be LHS of F-rules.

(1) An occurrence u which is not ¢ is useful for Pr
if VpEPFr, ueO(p) and plu is not a variable.

(2) A separation tree Ur for a set Pr is a tree,
whose nodes are labeled by occurrences, such
that

~ the root up is a useful occurrence of Pr,

~ subtrees are separation trees of Pg, for 1<i<
n, by not reusing previously useful occurrences
again, where Pr is partitioned into equivalence
classes modulo the symbols at w such that Pr
= Pr U .. U Ppn.

(3) A separation tree Us is complete if, in the result
of recursive partition of Pr, the corresponding
partitioned set for every leaf of Ur is singleton;
otherwise it is partial.

(4) Pr is distinct if Pr has a complete separation
tree. The F-rules are separable if Pr are
distinct. A constructor system is separable if
every set of rewrite rules for an operator is
separable.

Example 10 (1) Pr = {(x, A, B), (B, x, A), (A,

B, x)} is not distinct.

(2) Pr = {(x, A, B, C), (B, x, A, C), (A, B, x
D)} is distinct.

In Example 10.(2), the symbols at 4 separate Pr

into two groups of {(x, A, B, C), (B, x, A, C)}
and {(A, B, x, D)}, and then, based on the
symbols at 3, {(x, A, B, C), (B, x, A, C)} also is
separated into {(x, A, B, CJ} and {(B, x, A, CJ},
which are singletons.

A separation tree is related to a reduction
strategy. For example, in a rewrite rule F(A4, B, x/)
— 1 and a term F(Redexl, Redex2, Redex3), a
needed reduction strategy may reduce either
Redex! or RedexZ2, or reduce them simultaneously.
However, if we follow reduction with a separation
tree having an occurrence 2 is at the root, Redex?
is reduced first. In this way. a separation tree
chooses one of possible reduction paths. Like the
Example 8, the same effect is obtained when

flattening is applied.

4. Interpretation and Translation

4.1 Conditions of translation

There can be much variation in translating one
over the basic notions to
something We sketch the
conditions that our translation @ . Ter(X) — A
needs to hold.

C-1.
most basic condition is to preserve equality such
that ¢t = ¢’ implies &t) = ¢&t’). However, this is
not enough, since there can be a trivial translation
VieTer(2), «t) = &
Hence, a condition of some degree of inequality is
needed; ¢ = t’ implies &t) = #t’). This condition
will hold in constructor terms, terms consisting of

system into another,

in technical details.

(Preserving equality and inequality) The

such that, for example,

constructors.

C-2. (Homogeneous mapping) ¢ is a homoge-
neous function, a structure-preserving mapping; @
(F(Mi, ..., Mn)) = (FNAM), .., &(My)).

C-3. (Mapping constructors to numerals) The
lambda calculus doesn’t use function symbols while
TRSs do. In TRSs,
‘values’ [8], on which distinction and equivalence

constructors denote certain
of terms are based. Various interpretations of
constructors into the lambda calculus are possible
as long as they can preserve equality and inequ-
ality consistently. For example, constructors 0 and
1 in TRS can be translated I and @, respectively.
In our translation, constructors are translated into a

182 AEAE S =g R Al=" 2 o]& A 35 @ A 4 3(0084)

Church numerals as they holds good properties as
shown in Lemma 3.

C-A4.
transformation) Translation ¢ is defined following

(Encoding operators based on Bohm-out

Bohm-out transformation. Like Definition 4, given a
set of distinctive lambda terms obtained by enco-
ding constructors, an encoded lambda terms for an
operator is decided by Bohm-out transformation,
described in Algorithm 6. Here. translation ¢ is
mainly determined by LHS including distinctive
patterns and operators, and information about RHS
is used as little as possible.

4.2 Encoding terms

The set 2 of symbols of a TRS consists of a
set ¢ of constructors, a set 5 of variables, and a
set 2; of operators; X = X, U % U 3 Pr is
LHS of F-rules, and P is the set of P; for all
operators GE 2.

The function ¢ is specified by ¢. - % — A ¢ -
-2 U4 5— A ad

¢p © P — A’ Given a term Tla, .., an), its
encoding is defined;
¢ (Nay, ..., a)) = 6T) &as) Ka,) if T
is a constructor,
= ¢(T) dulai, ..., a) if T is an operator.

First,
functions ¢, ¢, and ¢, are defined such that ¢,
satisfies the condition ”if P is distinct, ¢,(P) is
distinct”. Then, ¢ is decidable by the construction
of Bohm-out transformation.

Our encoding consists of two phases.

There are several
ways to define @, ¢, and ¢, Our encoding is
based on Church numerals.

Definition 11 Suppose a constructor ¢ with an
arity k and a tuple of arguments for an operator
(a, .., am). Every element of X is mapped
uniquely to a natural number nEN. Let a be the
occurrence of a variable x in a given term.

- 8dc) = Ao 0 cxk<lnxs 0 x>

- dla, .., an) = <day), .., Han)>

- ¢dx) =0, if x is in a LHS

= ()™ if x is in a RHS,

where a is determined by the occurrence of the
corresponding x in LHS.

Special attentions are given to the encoding of
variables. Variables occurring in LHS and RHS
have different operational meaning. From the view

of separability, a variable in a LHS cannot be a
useful occurrence. Therefore, a special symbol [] is
introduced
occurrence of [] cannot be a useful occurrence in

in our encoding to denote that an

the lambda calculus. A variable in a RHS plays a

role of a ’'place-holder’ for the corresponding

variable in LHS. Instantiation of variables, deter-

mined at pattern matching, is applied to all cor—
responding place-holders in RHS. Our encoding
represents this behavior.

Definition 12 Let 7 be a set of lambda terms
in which every element of 7 includes at least one
Church numeral. Then, a numeral separation tree
Uiz, whose nodes are labeled by occurrences of
elements of BT(7), is defined as follows.

- the root of Ui is @ such that, YME T, My is
a Church numeral. If 7 is singleton, then 7 has
a numeral separation tree. Otherwise, let T be
partitioned into equivalence classes modulo
Church numerals at a

T=T7,U .. U Tn

- A subtree of a is a numeral separation tree of
Ty, 1<i<n.

- A numeral separation tree is complete if, in the
result partition of 7, the corresponding parti-
tioned set for every leaf of Ui is singleton.

In the above definition, a numeral occurrence
itself is not useful. Hence, a numeral separation
tree is not a separation tree. However, given a
complete numeral separation tree, a separation tree
can be obtained.

Lemma 13 If the set 7

including Church numerals has a complete numeral

of lambda terms

separation tree, then 7 is distinct.

Lemma 14 Let Pr = {P;, .., P} be the set of
patterns of F-rules in a separable system, Ur a
separation tree of Pr, and 7 = ¢,(Pr).

(1) Every element of 7 has a normal form.

(2) Let u = w1 - - *um be a constructor occurrence

at P;€Pr. Then, there exists a numeral
occurrence @ in the normal form of ¢,(P;) such
that a; = u; - (uptl) (Um+1) - 1.

(3) For every Uy, there exists a corresponding
numeral separation tree Ui in 7.
(4) 7 is distinct.
Example 15 Suppose a set of rewrite rules

2y Alxde] #ot Aayoze] WG 183

F(C(0), 1) = 1 and F(C(1), 2) — 2, where C, 0, 1
and 2 are constructors, and let P; = (C(0), 1) and
Py = (C(1), 2). Assume that 0(C) = Axx<3, x>, ¢
1) = <I>, and ¢(2) = <2>. Then ¢x(P1) = <3
<P>>,<I>> and ¢(P2) = <L3<I>>,<2>>. For
occurrences I, 1-1, 2 of P; and P; of F-rules,
there are corresponding numeral occurrences I -1,
1-2-1,2-1at ¢(P;) and ¢p(Pa).

Theorem 16
translated into the lambda calculus.

Proof. By Lemma 14 and Theorem 5.

4.3 Example and correctness

Following Algorithm 6, Definition 11, and Lemma

A separable system is directly

14, we define an encoding function ¢ X — AP
(closed lambda terms). The following example is
borrowed from [9].

Example 17 Consider the following simple rules.

F0) =1
Fz) =3

Let ¢40) = <0> and ¢2) = <2>. Then, a = 1.

(D (M=()z
(<> = (Azz Q) z =20
(<> =(A2z2) 2z=22

{z(Afx.x), z(Afxf(fx))} is original.

(2) () =() [z := U] (the first term is selected
according to the first prefix of a = 1)
(z0)®=U10=0 = Mxx
(z2)%=U"12=2 = Acfife)

(3)=()fx
(Mex)” = (Mex) fx=x
(Apefpe))? = (Apefifc)) f x = f (f x)

In {x, f(fx)}, every ~ equivalence class has a

single term, hence the transformation

7, terminates. Now we apply #; transformation to
encode RHS.
@ ()" = () [x:= D] [f := Ay. &3)] (since {
has one following term).
() =zfx[z:=U\[x=«D]If = Ao
(3) = U Ay &(3)(1)
Then &(F) = AcxUY Ay.o(3)e(1).
We confirm the encoding @
A F(0)) = «F)<0>
= (AxxU'; dy.&(3)1))<0>
= <P>UYy Ay.(3)8(1)
= (Azz2QUY Ay.(3)(1)
U 0 Ay.o3) «1)

=0 Ay.¢(3) A1) = (Mxx)Ay.¢(3)i(1)

= (1),

which shows encoding F(0) = I in TRS.

F-rules of Example 17 are flat. Rewrite rules
with more complex patterns can be also translated
into the lambda calculus either via flattening as
described at Theorem 7 or by following a path of a
separation tree. The case of recursively-defined
rules is introduced in the Appendix, where the Y
combinator is used for the recursion.

Theorem 18 (Correctness) Let s and ¢ be terms
of a separable system and those have no operator
normal forms, normal form including an operator.

(1) s ="t = &s) =5 t)

(2) &s) —'p &t) = s = ¢

(3) If s has a hnf (head normal form), then &s)

has a S-hnf.

The condition of
Theorem 18 cannot be lifted, since they are £

"operator normal terms” at

-reduced to strange terms in the translation accor-
ding to the property of ~a-equivalence. Following
in the lambda
calculus, we apply this notion to TRS; a hnf in

the well-defined notion of hnf

TRS is a term having no redex at the root, also
known as root stable in {8]. Because a nf (normal
form) is a special case of hnf, Theorem 18.(3)
implies ”if s has a nf, then &) has a Gnf"
Theorem 18.(1) and (2) means that translation ¢
holds equality and inequality conditions. Hence, ¢
satisfies translation conditions C-1 to C-4.

4.4 Encoding default rules

Translation ¢ malfunctions for operator normal
forms as we discussed in the above. Like usual
functional programming languages, those can be
interpreted as L1, a fresh symbol denoting an
'undefined’ value - this could be replaced by & in
the pure lambda calculus. In this subsection, we
discuss how to encode them.

At Example 17, 0 is interpreted as ¢, and 2 as 2.
According to the ~s-equivalence class of Lemma 3,
&F(1)) = HF2) = &3) also holds.

discussed in the translation condition C-3, inter-

As we

preting constructors, we can have many alternatives
as long as equality and inequality are preserved. A
more refined way is that every constructor appear-
ing in LHS is associated with ordinal numbers

184 FRAGI=EA: A|2F B ol A 3B A A 4 5(A084)

starting from 0, @{c) = i for IEN. Then, the
next ordinals are assigned to constructors appearing
only in the RHS. For example, constructors in
2, and

ET)

Example 17 are mapped: 0 to 0, 2 to 1, 1 to
3 to 4.

According to the property of ~.-equivalence and
new ¢, by adding default rules, we can extend
translation ¢ such that all operator normal forms
are identified to be undefined. For example, a
default rule is added to Example 17.

Example 19 Addition of a default rule to rules
at Example 17.

FO) = 1
F2) =3
otherwise = error
Then, translation is applied as follows:
HFNK0)) = &3)
AFNH1)) = &4)
AFNN2)) = o L)

In this way, we can identify all operator normal
forms in the translation. As new numbers are
assigned for default rules, the notion of orthogona-
lity is
Theorem 18 still holds. The meaning of Theorem

preserved, Hence, the correctness of
18 is also extended; translation preserves not only
equalilty and inequality based on constructor terms
but also a certain level of definedness/undefined-
ness of terms. This may lead us to more abstract
discussion such as Bohm trees of TRSs [8] and
translation preserving them, which is beyond this
work.

In a practical aspect, default rules are widely
used in functional programming with the strategy
of ‘top-to-bottom’ pattern-matching.

Example 20 Consider following Factorial
functions written in Haskell.

fac 0 =1 .
fac n = n * fac (n-1)

These rules also can be translated by ¢ The
second rule of fac, a default rule, matches every
numerals other than 0. Encoding 0 into 0 and n

(default case) into I, one can encode the fac rules.

5. Related Works and Conclusion

In Berarducci and B6hm's canonical systems [11],

for every pair of constructor and operator, one rule

is defined, where exactly one constructor always
appears at a fixed occurrence I in LHS, so no
operator normal terms exist. Their encoding is so
elegant that the Y combinator is not used for
recursively-defined rules. However, it would be
impossible for their technique to encode rewrite
rules with less restricted patterns.

In this work, we show pattern-matching seman-
tics of TRSs can be represented in the lambda
calculus, following Bohm's separability. ~« equivalence
of Bohm tree allows us to encode default rules and
undefined terms of TRSs.

translation ¢ would hold properties of separable

We conjecture that

systems more tightly than as described in this
paper; neededness, SN, Bohm-trees of separable
systems, and etc would be also preserved and
reflected. We remain this issue as a future study.
This work can serve as a formalism of trans-
lating TRS,
languages, into the lambda calculus, since it follows

including functional programming

faithfully Bohm's separability, a general theory

applicable to a large class of eguations.

References

[1] N. Dershowitz and J.-P. Jouannaud and J.W.
Klop. Open problems in rewriting - no. 1. In 4th
International Conference on Rewriting Techniques
and Applications, Lecture Notes in Computer
Science 488, pp. 445-456, Springer-Verlag, 1991.

[2] G. Berry. Stable models of typed A-calculi. In
Automata and Languages and Programming.
Lecture Notes in Computer Science 62, pp. 72-89,
Springer—-Verlag, 1978.

{3} C. Bshm. Alcune proprietd delle forme B-n
-normalinel A-K-calcolo. JAC Pubbl., 696:19, 1968.

[4] S. Byun, J.R. Kennaway, and R. Sleep. Lambda-
definable Term Rewriting Systems. In Asian
Computer Science Conference '96, Lecture Notes
in Computer Science 1023, pp 106-115, Springer-
Verlag, 1996.

[5]1 H. Barendregt. The Lambda Calculus: Its Syntax
and Sermnantics. North-Holland, 1934.

[6] J.W. Klop. Term rewriting systems. In Abramsky
et al, editors, Handbook of Logic in Computer
Science, volume II. Oxford University Press, 1992.

[7] G. Huet and J.-]. Levy. Computations in Ortho-
gonal Rewrite Systems I and II. In Lassez and
Plotkin, eds., Computational Logic: Essay in Honor
of Alan Robinson, MIT Press 1991. (Originally
appeared as Technical Report 359, INRIA, 1979.)

e A" g Addeze HwE 185

[8] JR. Kennaway, F.J. de Vries and V. van Oostrom,
Meaningless terms in rewriting. Journal of Func-
tional and Logic Programming, 1999.

[9] S. Byun, Translation of Functions into the Lambda-
Calculus. 7]Z#8d7L =2 A 154, 3%, pp
261-269, AAQNEw 712AEATH, 2004.

[10] ¥A$, Eeirks Al=de] A Foldd B FH
78}sl=E2 A31E A5E, pp. 668-666, 20043 59,

{111 A. Berarducci and C. Bohm, A self-interpreter of
lambda calculus having a normal form. In CSL-
92, Lecture Notes in Computer Science 702, pp.
85-99, Springer-Verlag, 1992.

Appendix

Example.
Consider Peano’s arithmetics, having recursively-
defined rules, where Ur = 1.
A0, x) — x
A(S(x), y) — S(A(x, y))

Let ¢£0) = <0> and ¢«S) = Ax.<2x>. Then, ¢x(0,
y) = <LKO>, [>, ¢,(S8(x), y) = <2, [>, [J>, and
a=1-1
W ()=()z

(<<0>, [= (Az2<0>[F)z; = 2z <0> [J

(<<, [, [= (Azz <2 [> [0) 21 = =

<[> [
@2 () =()[z1:= U] (due to o« = 1-1)

(z1 <@> [O)* = U5 <0> O = <0>

(21 <2 [> O =V4<2 [>0=<2 >
@) () =()z

(<0>)¥ = (Azz Q) 22 = 22 0

(2 [PV =(Az2z2[0) 22=2:2]
@ () =()a a[22 = Pa]

(22" =Pr0aiaz= a2 0 a

(z22)" =P220araz=a: 2 0a
(B () = () [az := U] [a1 == U%] (due to the

second prefix of @)

(az 0 a)™ = U21Q v =0

(@2 0a)*=U20U04=2
Church numerals at a are selected. Then, separation
trees between Church numerals have the form a’ =
1-1---1
®(’=()fp

"= (Mxx)fp=p

(2" = (Apefifc)) fp = f ()
where every ~ equivalence class consists of single
A-free term.

(7) Now we apply #; transformation to encode

RHS. In (6) p and jf should be related to the

corresponding RHS. Given terms in the form of

<L0>, #N)> and <2, &« M)>,&N)>, p is re-

placed by the function which selects the subterm at

2 and f by the function which selects subterms at

1+2 and 2 and constructs &S(A(M, N))). Then,

the whole encoding 7 is a composition of 7., and

Ay A= At M.

("= () [p = U%ISf = Ab(KS) (HA) <((

JUAU?), (() U%2)>))], where () means the input

of a tuple of arguments.

(V=()zi[z:= U4l 2201 a2 [22 := Po] [ap =

V1] [ar := U] £ p [p = U%IIf i= Ab(&S) ((A)

() U%), () U2>))]

= () U4 P U% U (Ab(KS) (HA) <((

JUFUP), (() UP2)>))) (()U).

Then,

WA) = Axx Uy Pp U°r UP (Ab(&(S) (HA) <(x

VAU%), (x UP2)>))) (x U%)

= Y (daxx U5 P: U UF (Ab. <2, (a < (x

VAU, (x US>)>) (x UP2)

Reductions A(S(0), 0) — S(A(0, 0)) — S(0) are

simulated as follows.

#A(S(0), 0)) = &A) ¢(S(0), 0) = &A) <&S(0)),

w0)>

= WA) <<L2, <0>>, <>>

= Y (daxx U P; U U (Ab<Z, (a <(x
UAU%), (x U2)>)>) (x U <<g <0>>,
<g>>

= <, (HA) <<L0>, <O>>)>

=" <2, <0>> (= «S(0)))

CRUES
BRI =EA : A2H B o]E
ABAAIE F=

