References
- A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002. Available from http://gif.inel.gov/roadmap
- D. R. Novog, J. Luxat, and L. K. H. Leung. Estimation of conceptual supercritical water reactor response to a small loss of coolant accident. 3rd Int. symposium on SCWRDesign and Technology, 2007: 108-117
- T. C. Totemeier and D. E. Clark. Effect of transient thermal cycles in a supercritical water-cooled reactor on the microstructure and properties of ferritic-martensitic steels, Journal of Nuclear Materials, 2006, 355: 104 https://doi.org/10.1016/j.jnucmat.2006.04.007
- D. Squarer, T. Schulenberg, D. Struwe, et al. High Performance Light Water Reactor. Nuclear Engineering and Design 2003, 221: 167-180 https://doi.org/10.1016/S0029-5493(02)00331-X
- P. Kritzer. Corrosion in high-temperature and supercritical water and aqueous solutions: a review, Journal of Supercritical Fluids. 2004, 29: 1 https://doi.org/10.1016/S0896-8446(03)00031-7
- W. Yang, Reactor Material Science, Beijing: Nuclear Energy Press: 195
- Y. Chen, A. Kruizenga, X. Ren, et al. Progress in understanding corrosion in supercritical water systems. 3rd Int. Symposium on SCWR-Design and Technology, 2007: 128
- L. K. Mansur, A. F. Rowcliffe, R. K. Nanstad, et al. Material needs for fusion, Generation IV fission reactors and spallation neutron sources-similarities and differences, Journal of Nuclear Materials, 2004, 329-333: 166-172 https://doi.org/10.1016/j.jnucmat.2004.04.016
- Y. Chen, K. Sridharan, and T. Allen. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water, Corrosion Science, 2006, 48(9): 2843-2854 https://doi.org/10.1016/j.corsci.2005.08.021
- X. Ren, K. Sridharan, and T. R. Allen. Corrosion of ferritic -martensitic steel HT9 in supercritical water. Journal of Nuclear Materials, 2006, in press
- L. Tan, Y. Yang, T. R. Allen. Oxidation behavior of ironbased alloy HCM12A exposed in supercritical water. Corrosion Science, 2006, 48(10): 3123-2138 https://doi.org/10.1016/j.corsci.2005.10.010
- L. Tan, K. Sridharan, and T. R. Allen. The effect of grain boundary engineering on the oxidation behavior of INCOLOY alloy 800H in supercritical water. Journal of Nuclear Materials, 2006, 348: 263-271 https://doi.org/10.1016/j.jnucmat.2005.09.023
- Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals. IAEA, 1999:14-18
- E. Jiang, W. Yan, R.-C. Liu, et al. Research on general corrosion property of 304NG stainless steel. Nuclear Power Engineering, 2005, 26(4): 390
- C. M. Abreu, M. J. Cristobal, R. Losada, et al. Comparative study of passive films of different stainless steels developed on alkaline medium. Electrochimica Acta, 2004, 49: 3052
-
X. Gao, X. Wu, Z. Zhang, et al. Characterization of oxide films grown on 316L stainless steel exposed to
$H_2O_2$ -containing supercritical water. Journal of Supercritical Fluids, 2007, 42: 157-163 https://doi.org/10.1016/j.supflu.2006.12.020 - J. Zhang, N. Li, Y. Chen, et al. Corrosion behaviors of US steels in flowing lead-bismuth eutectic (LBE). Journal of Nuclear Materials, 2005, 336: 1-10 https://doi.org/10.1016/j.jnucmat.2004.08.002
Cited by
- Phase Identification and Internal Stress Analysis of Steamside Oxides on Plant Exposed Superheater Tubes vol.43, pp.5, 2012, https://doi.org/10.1007/s11661-011-0874-x
- Alloy 800H under supercritical water conditions: a flow reactor study of corrosion and hydrogen evolution vol.66, pp.12, 2015, https://doi.org/10.1002/maco.201508315
- Corrosion Behaviour 310 Stainless Steel in Superheated Steam vol.84, pp.5-6, 2015, https://doi.org/10.1007/s11085-015-9591-y
- Oxidation Behaviour of Alloys 800H, 3033 and 304 in High-Temperature Supercritical Water pp.1573-4889, 2017, https://doi.org/10.1007/s11085-017-9784-7
- Corrosion and Stress Corrosion Cracking Susceptibility of Type 347H Stainless Steel in Supercritical Water vol.74, pp.1, 2018, https://doi.org/10.5006/2459
- Corrosion Behavior of Austenitic and Ferritic/martensitic Steels Exposed in Supercritical Water with Dissolved Oxygen vol.71-78, pp.1662-7482, 2011, https://doi.org/10.4028/www.scientific.net/AMM.71-78.2916
- Oxidation behavior and Stress Corrosion Cracking Susceptibility of Fe27Ni16Cr3.5Al based AFA Alloy in Supercritical Water vol.5, pp.6, 2018, https://doi.org/10.1088/2053-1591/aac989
- Oxidation Behavior of Austenitic Steels in Supercritical Water Containing Dissolved Oxygen vol.28, pp.1, 2019, https://doi.org/10.1007/s11665-018-3809-5
- Oxidation behavior of austenitic steel Sanicro25 and TP347HFG in supercritical water pp.09475117, 2019, https://doi.org/10.1002/maco.201810247