20084 3% HAIZEE ==X A 45 A SC H X 2 &

= 2008-458C-2-8

q}zhﬂ /\] ﬂ% Hﬁ]— Budgeted uﬂ J_\:;] ‘61—1;]—7]

(Budgeted Memory Allocator for Embedded Systems)

d237] ole =% 24 9] A% B4 Aud Pk ST A
A% <997 Bgd nzel YoIe AAsked old was FA F2E 1
of U Be J9e Bgste] BUHE H28A7171E budgeted 7

W Mg 47 F94E& Eoln
Hoz gy Axge AE 7 T
g A F sholth ¥ =RdAE Y FEE AAE

Eg €975 ALt U vimey 3718 ASde WAl budgeted R F71E AMEEH Had @ d99 37
£ Hd 4950/ 7&’*]@ F AU @ 999 2717} 16KB o)l budgeted MR E77|E AHEH2E Folue A=Y
A718¢ Eoj€ vHsE BT + Qi

Abstract

Dynamic memory allocators are used for embedded systems to increase flexibility to manage unpredictable inputs and
outputs. As embedded systems generally run continuously during their whole lifetime, fragmentation is one of important factors
for designing the memory allocator. To minimize fragmentation, a budgeted memory allocator that has dedicated storage for
predetermined objects is proposed. A budgeting method based on a mathematical analysis is also presented. Experimental
results show that the size of the heap storage can be reduced by up to 49.5% by using the budgeted memory allocator instead
of a state-of-the-art allocator. The reduced fragmentation compensates for the increased code size due to budgeted allocator

61

when the heap storage is larger than 16KB.

Keywords : Memory allocator, dynamic memory management, embedded system

1. Introduction

Many embedded systems adopt a dynamic memory
allocator to deal with unpredictable
outputs. As embedded systems generally run with

inputs and

fixed applications, there are objects whose type can
be determined a priori while their number to be
stored is unpredictable. An object, in this sense, is a
kind of structured data item such as a Pascal record,
C struct, or C++ objectm. Based on the fact that the
types of objects to be stored in the heap storage are

A, T AYL-2NRA, AR BN TFE
(Telcommunication R&D Center, Samsung
Electronics)

BA4A R 2008E92€913Y, R SFEY: 2008: 33913

(117

predetermined, a memory allocator can be optimized
for better memory efficiency.

Memory efficiency is especially important for
embedded systems that run continuously during its
whole lifetime where the memory fragmentation
problem is very serious'”. However, our experimental
results in Section V reveal that traditional allocators
are not always efficient because of fragmentation.

This paper proposes a budgeted memory allocator
or, in short, a budgeted allocator, which can reduce
fragmentation by budgeting dedicated storage for
predetermined objects. Further, a budgeting method
based on mathematical analysis is presented. The
experimental results show that the size required for
the heap storage with our budgeted memory allocator

62

is always smaller than those
state—of~the-art allocators™ > .

Section I explains the motivation of this work

required with

and reviews the related works. Sections I and IV
describe the budgeted allocator and the budgeting
method, A% the
experimental results to prove the effectiveness of this

respectively. Section shows
allocator and provides an analysis of its costs.

Finally, Section VI provides the conclusion.
I. Motivation and Related Works

Many studies have been conducted on dynamic
allocators for general-purpose heap storage. The
Kingsley and the Lea allocators are well-known
state-of-the-art allocators’®. The Kingsley allocator
is used in Berkeley software distribution (BSD) and
is well known for its high speedm. The Lea allocator
is known to be both fast and
memory-efﬁcientm. However, the experimental results

used in Linux

in Section VI show that they are not always efficient
because of fragmentation.

a hybrid
allocator™” was proposed, which applies different

In order to reduce fragmentation,

management algorithms depending on the size of
objects. The scheme of the different behavior based
on the size is also implemented in the Lea allocato 16
Static allocators do not cause fragmentation'” because
they allocate a fixed-size memory region immediately
after the system initialization and do not allocate or
free memory regions at run time. However, this may
also lead to wastage of memory because memory
must be allocated for worst cases.

Fragmentation may be reduced by improving the
locality by analyzing the lifetime™, freeing all the
objects in a region at the same time™ or caching
frequently used objects™. Berger™ could enhance the
memory efficiency by providing individual objects
deletion capability along with deletion of a whole
region. However, abovementioned studies focus on
reducing execution time rather than fragmentation.

Qur budgeted allocator reduces fragmentation by
budgeting a dedicated region and avoids wastage of

LHZHy A|AEE 2B Budgeted 22| &Y

(118)

0|53 ¢

memory by providing a shared region for worst
cases. The budgeted allocator uses a general-purpose
allocator for the shared region. Thus, previous studies
of the
general-purpose allocator can be adopted for the
shared region. The budgeted allocator is especially
useful for real-time systems that runs continuously
during lifetime where
fragmentation problem is very serious’. Its cost is

on improving memory efficiency

its whole the memory

increase in the code size.
III. Budgeted Allocator

The budgeted allocator comprises a dedicated
(region) allocator and shared (region) allocator. The
heap storage is divided into two parts: the dedicated
region and the shared region, as shown in Fig. 1.
The dedicated region is a simple segregated storagem
for predetermined objects O; of size S; where S; #
S @ #) for 1 i, j < n Note that different

objects a and b can be O, if the size of @ and b are

<

same to S;. A bucket is a chunk of memory. The
dedicated region for O; is composed of NV, buckets
that are S;,-sized and dynamically managed. Object
O; is first allocated to the dedicated region by the
dedicated allocator. If there is no free bucket of exact
size .S; in the dedicated region, O; is allocated to the
shared region rather than allocated to a larger bucket
in the dedicated region. In this way, no fragmentation
is possible by the dedicated allocator. Any other
object O, where s > n are always allocated to the
shared region by the shared allocator. For the shared
allocator, any conventional general-purpose dynamic
allocator can be used We used the two level
segregate fit (TLSF) allocator” as the shared

Ny

o — A

s 8-sized buckets
'1—7" L

T T .|

1t object 2 pbject n' object
|] J
Dedicated region Shared region

a8 1. g g9 74
Fig. 1. Composition of the heap storage.

200811 3 FXNSHE =EXN M 45 HSCHEH M2 &

function init
// S: denotes the size of objects 0; managed in the
dedicated region
for i =1 ton
Store the current position of the low-level
allocator as the start address of the S;-sized
buckets;
Low-level allocator allocates N; buckets of size
Si;
Store the current position of the low-level
allocator as the end address of the S;-sized

buckets;
Create stack ST; and push N; buckets into S$Ti;
/{/ STi.pop{) - remove and return a bucket from

the top of ST;
// 8T;.push(b)
end for

- add bucket b to the top of ST;

end function

function alloc (s)
if not initialized
call init
end if
for i=1ton
if there exists ST; for s (i.e. s == 5;) and ST; is
not empty
return ST;.pop();
end if
end for
call the shared storage allocator;
return the result;

end function

function free (b)
// b is the pointer of the bucket to be freed
for i=1ton
If b = the start address of the S;-sized buckets
and b < the end adderss of the S;-sized buckets
ST;.push(b);
return
endif
end for
return b to the shared storage allocator

end function

3% 2 Budgeted EE7|9] oA 2=
Fig. 2. Pseudo code of the budgeted alflocator.

allocator because it meets real-time requirements.
That is, TLSF can allocate and free memory space in
a bounded time and utilizes memory efficiently.

Fig. 2 shows the pseudo code of the budgeted
allocator. Note that O;, S;, and NV, for 1 < i < n
are predetermined at compile time. Object size §; is

provided by the user and /&, is determined by the

(119)

63

budgeting method described in the section IV. Free
buckets of size §; are managed by a stack S7.. So,
there are n stacks {S7), ST, -, ST,} for free
buckets. The free list ST; can be any type of
dynamic data structure,

The function init calls a low-level allocator to
reserve a memory region to be managed by the
dedicated allocator. The low-level allocator is a type
of system call to increase the data space of the
program with respect to the requested size. For
example, library routine sbrk”? in C behaves as a
low-level allocator. Most dynamic memory allocators
reserve memory regions to be managed by
themselves using a low-level allocator.

The function alloc calls the function init if it is
not initialized. If there exists S7; for the requested
size s, that is s equals to 5;, a free bucket is popped
from the top of stack ST; and returmned. Otherwise, it
passes the request to the shared allocator and returns
a part of the shared region.

The function free determines whether the bucket
to be freed belongs to the dedicated region. It also
determines the size of the bucket. To keep the same
interface with conventional memory allocators, the
only available information is the pomter & of the
region to be freed. In order to perform the above
tasks only with the pointer, the function init should
allocate a continuous memory region using the
low-level allocator with size S; x N, for the S
~sized buckets and evenly split the allocated memory
region into /V, buckets. Then it is checked whether
the address b belongs to S;—sized region. If the
bucket to be freed belongs to the §;-sized buckets, it
is added into S7;. If the bucket to be freed belongs
to the shared region, it is passed to the shared
allocator to be freed.

IV. Budgeting Method

This section describes how to determine 2V, which
is the number of buckets dedicated to O, in the
dedicated region. Three solutions are available for the

64

determination of ;' user-driven, compiler-driven,
¥ The

solutions" user—driven
solution may suffer from human errors®. Lack of

and profile-driven
information of run time behaviors inhibits applying
the compiler-driven solution to the budgeting method.
Thus, we select the profile-criven solution, which is

widely used for customizing memory allocators®™®®

1]
P,(t) is
post-processing the memory trace. P,(t) denotes the

number of buckets in use of size S; at time ¢. To

The memory profile obtained by

generate the trace, the application is compiled and run
with a conventional general-purpose allocator that
contains augmented code to generate the trace. In the
allocation function (for example, the
requested size and the returned address are traced
with a timestamp. The timestamp is only used for
ordering the trace. In the free function (for example,
free) the address to be freed is traced with a
timestamp. Then, P,(t) is profiled according to the
trace. When O; is requested at time ¢, P,(t)
becomes P,(t— At)+1, where At is the time
when object O, is either freed or allocated lately. If

malloc)

O; is freed at time t P,(t) becomes
P,(t—At)—1. Otherwise, P.(t) keeps
P (t— At).

1. Problem Formulation

The main objective of determining &, is to
minimize the size of the heap storage. Eq. (1) shows
the required size R(t) of the storage at time ¢.

R(t)=Ut)+ F(t)+ H(t) @

where U(f) is the amount of buckets in use, F(t)
is the internal and external fragmentation, and H(¢t)
is the overhead due to memory allocators. Here, the
buckets in use refer to the allocated or reserved
buckets, which cannot be used for other purposes.
The internal fragmentation occurs in the unused
region within a bucket because the allocated bucket
is larger than the requested size, and the external
fragmentation occurs due to the free buckets that

LIZE MARE 25 Budgeted M 22| YT

(120

0153 2

cannot be allocated because their sizes are smaller
than the requested size®®. The overhead refers to the
memory region that is used not by the requestor but
by the allocator to manage buckets.
The size of the heap storage should be greater
of R(t). In order to
minimize the size of the heap storage, R,,,, should
be minimized. Overhead H(¢) can be ignored because
it affect to R,

Fragmentation F(t) cannot be estimated accurately

than the maximum value R, ,,

does not significantly

without simulation because it depends mostly on the
scenario. However, no fragmentation occurs in the
dedicated region when our budgeted memory allocator
is used. Therefore, it is very likely that £(t)
proportionally decreases as AV, increases. In the

meantime, the maximum value U. of U(t) may

max

increase as /V, increases as shown below.
Eq. (2) shows U(t) in a different form

U)=33(8, % P,(1))

?

2
For budgeted allocators, Eq. (1) is rewritten as below

3

The superscript B denotes that each varable is for

budgeted allocators. Now, UZ(t) can be written as
follows

REt)= UB1)+ FBt)+ HE®t)

UB(t) = X 3(8; < MAX(N, Py(1)))

(3

(4)

where MAX(A, B) denotes the larger value between
A and B. This equation implies that U/5(¢) is larger
than U if N, > Pdt) for each i because other
objects cannot use the S;-sized buckets in the
dedicated region. Note that P(f) is independent to
Pi(t) where i = j. If N; < Pt) for every t and i,
UZB(t) is always smaller than U(). However, our
goal is to have smaller U2, than Upa. That is,

(5)

= Pima) buckets in the
So the following

<
mazr —

Note that if N; > P;pm, (N,

dedicated region are useless.
condition should be enforced too:

maxr

2008 3@ MAZEE =X X 45 H SCH A 23

N,< P,

Lymazx

6

for every i

where P;my is the maximum of Pi(t).
In addition, the dedicated region should be

maximized in order to minimize F°(t). As the size of

the dedicated region is
(8% W)

13

(7

N; should be maximized while % < Upa from
Eq. 5) and N, £ Pipa from Eq. (6) for every i.

To make it easy to understand the formulation, an
illustrative example is shown in Fig. 3. Fig. 3a and
3b show U(t) and UP(¢), respectively, when only N;
is non-zero and Nz and Nj are zero. As U(t) is
summation of S; x P(t) for every i, the graph is
llustrated as split regions. In this example, N; is set
to P/(t2) when U(t2) is Upm Even though it does
not cause U(t2) increase, it causes U(tl) to exceed
Una, Which means that Uy becomes greater than
Urar. To maintain U’ smaller than Upg, N; should
be set to smaller value so that UP(f) does not exceed
Upax all the time.

2¢)
A

Unax

S x PAD

Sox PAYH

% S x Pr(f)
s

(@) Upt () U2l of
Fig. 3. An illustrative example of (a) U® and (b) LF®)

a8 3

(121)

65

2. Solution

This solved within the
polynomial time by an exhaustive algorithm. From
Eq. (6), NV, can be any value from 0 to P;mm and we
need to explore the combination of { Nj, Nz, N, }
that makes the size of the dedicated region largest
while maintaining U2 .. < U

mar — mar*

problem cannot be

Consequently,
the complexity is proportional to HPi,mx. Such
i

algorithms can hardly be applied when n or Pimg is
large. As a practical solution, we propose a greedy
algorithm whose pseude code is shown in Fig. 4.
This algorithm can
polynomial time because its complexity is proportional

solve the problem within

to n.
Every time ¢, following Eq. (8) should be satisfied.

UZt) < U, (8)
Inserting Eq. (4) to Eq. (8) becomes
3305, % MAX(N, PAO))= Uy, ®

2

for every { and ¢ Now, a sub-optimum &, is
computed by assuming that N; (0 # j) are fixed
priori. The following assumptions are used to
compute sub-optimum N

begin
for i =1 to n compute P, ..x end for

compute Unpsx

for i =1 ton

compute M, i,

M@®)=U_,

=SS, x MAX(N,, P, (1))

1

- 328, x P,

J=i+l

Ni = MN(Rmax’I.Mzmm /SIJ)

where

end for

end

J8 4 Greedy €125 oAl ZE
Fig. 4. Pseudocode of the greedy algorithm.

66

1. & is ordered such that S; > §; if i <.
2. N; is computed by assuming that N, is

precomputed and N; = 0 where k < i <.

For Nj, assume that N; (1 < j < n) is zero. Then,
Eq. (9) can be rewritten as Eq. (10)

S, x MAX(N,, B(t)) SU,, ~ (S, x P,(1))

j=2

(10)

Note that every variable except for N; is known. If
N; < Py(t), Eq. (10) becomes
S, x B SU,, — > (8, xP,(1) 1)
j=2
that is always true by the definition of Up. In other
words, if N; < Py(9), it is always true that Ul <

Una.
However, if N> Py(t), from Eq. (10)
§,xN, < {Um =38, x P,.(t))} MO (12

Note that the right hand side is denoted by M;(t)
that is a function of ¢. That is,

M, (t)
N, < ;,1 (13)
for every t. Therefore, if
M, (t)
N, < Pi(t) or P,(t)< N. < ; (14)
1
for every t, UPrax < Upa. In summary,
M1 min
N, < — (15
1 Sl

where M min 1S the minimum of M;(t). Because we
are looking for the largest N; that satisfies UPpg <

Unm al’ld N] < P],ﬂm,
J’Pl,maxJ

Ml min
N, =ML ’
Sy

In general,

(16)

LHEY MARES 918t Budgeted M 22| BT

(122)

0|53 ¢
N, = MINQ%J,PIMJ amn
where
M®=U_ - ’Z(Sj X M4X(Nj,Pj(t)))
o 18)
- 2. (8, xP,@®)

Our experimental results in Section V shows that
our heuristic algorithm is much faster than the
exhaustive search algorithm and results of {N;, Na, -,
N,} are close to the optimum values.

V. Experiments

Table 1.
budgeting algorithms. Our proposed greedy algorithm
is up to 15 thousand times faster than the exhaustive
algorithm while the result is 99.8 % of the optimal
solution. Note that if n and P;m are increasing, the

shows the comparison results of the

execution time of the exhaustive algorithm increases
exponentially. Considering that most of embedded
systems use more than five dynamically managed
objects, the exhaustive algorithm would be infeasible
for such a large number of objects.

The budgeted allocator
previously proposed nine dynamic allocators and one

is compared with
static allocator. The nine dynamic allocators include
the six allocators in [9] named from testl to tests,
the Kingsley (DJGPP in [9]), the Lea®, and TLSF".
A simple static allocator is designed for comparison
purpose.

E 1. Budgeting ¢X2|&e| H|@
Table 1. Comparison of budgeting algorithms.
n 4 4 5
P 10 20 10
Execution | Exhaustive | 7391 | 33781 | 157671
time (ms) Greedy 7 8 10
Exhaustive | 15520 | 34683 | 16016
2GS XN)[™ Greedy | 15520 | 34688 | 15084
' Ratio | 100 % | 100 % | 9.8 %

2008 3 MAIE5E =FX M 45 HSCHA 235 67

For the performance evaluation of memory
allocators, there are mainly two approaches to
generate inputs: standard benchmark applications and
synthetic workload models”. As mentioned in [1], the
requirements of real-time systems are different from
those of the standard benchmark applications. Thus,

040 are used to generate

the synthetic workload models
worst-case workload,

Generally dynamic allocators request predetermined
size of storage M to a low-level allocator when a
memory allocation for an object is needed. Then they
manage the allocated storage M for further memory
requests. Once M is full, dynamic allocators request
additional storage to the low-level allocator. The
predetermined sizes are usually 2° bytes where k
varies depending on the implementations. For
example, testd and test always request fixed size of
storage. In this experiment 2" is used Also testl
requests various sizes 2%, 2%, and so on. On the
other hands, Lea allocator may request arbitrary
sizes. So, it is obvious that the performance of
memory allocators is largely depending on the profile
of workloads.

Five different types of workloads are used for the
experiment depending on the size of the objects.
Table 2. shows the profiles of five different
workloads. Every workload has only four types of
objects, that is n = 4, and the maximum number
P; ... of alocated object O; at the same time is

E 2 S, 8 S3 S22 EAE 3L HHE 4
7k 2+ workioad®! profile

Table 2. Profiles of workloads where every workioad has
four types of objects whose sizes are denoted
by S, Sz S3, and S..

S; A S, S S,
Workload 1 | 131072 | 65536 | 32768 | 163%4
@ (2% 29 2%
Workload 2 | 2048 1024 512 | 256 (&)

eh | @9 (2%
Workload 3 | 81936 | 80176 64032 49472
Workload 4 | 2952 1978 1040 528
(Workload 5 | 131072 | 80176 1024 528

@7 2

limited to ten: that is P, .., = 10. All objects in

workloadl are 2 sized and larger than the
predetermined size of storage M = 2 for test4 and
tests. All objects in workload? are 2¢ sized but
smaller than M. Workload3 and workloadd are
composed of non-2° sized objects. All objects in
workload3 are larger than M and all objects in
workload4 are smaller than A/, Workload5 is
composed of mixture of objects in other four
workloads. These workloads are synthesized such
that every allocator used in this experiment has at
least one workload profile that is optimum to the
allocator.

Two aspects of each allocator are analyzed:
memory efficiency, and code size. The memory
az OF
required storage R(t). i an allocator A has smaller
R,.. than another allocator B has, A has higher

efficiency is measured by the maximum size R

memory efficiency than B because A requires smaller
memory for the same application. The maximum
amount of allocated regions by the low-level allocator
is measured as R,,,. Allocator TLSF is an
exceptional case because it simply fails the system if

the pre-requested storage M is not sufficient for the

»Testl

200.0% ®Test2

Test3
W Testd

150.0% + # Tests

& Test6

% Kingsley
1000% +
Lea
= TLSF
50.0% # Static

Budgeted

0.0% -

Workload1 Workload2 Workload3 Worklgad4 Workloads
Waorkloads

J8 5 2 workloadol| wE ojzz| sE|Eo| H2z|
24

Fig. 5 Memory efficiency of memory allocators for
different workloads.

(=]

68 HEg Alx

following memory requests. For TLSF, R, . is
measured by trial and errors. That is, a workload is
iteratively simulated with smaller heap storage until
TLSF fails to respond a memory request.

Fig. 5 shows the memory efficiency of the eleven
allocators including the budgeted allocator. The
y-axis is the relative size of R, ,, where R, . of
the budgeted allocator is ser to 100%. As can be
seen, the budgeted allocator is always more efficient
in using memory than other ten allocators are. Lea
allocator shows steady and good memory efficiency
throughout the five workloads. Nevertheless, the
proposed budgeted allocator requires 89%~49.5%
less memory than Lea allocator does.

Note that R,,,,’s of different allocators vary with
the simulated workloads as mentioned before. Testl
performed more efficiently in the 2* small and mixed
Test3, in the 2*
scenarios; Tests 4 and 5, in the arbitrary large
scenario; Testf, in the 2F small and arbitrary small
scenarios; and TLSF, in the 2* small and arbitrary
small scenarios. We were not able to form a scenario

SCenarios; large and mixed

where Test2 and the Kingsley allocator performed
most efficiently because Test2 and the Kingsley

200.0%
1500% W Testi
W Tast?
W Test3
W Testd
100.0% W Tests
W Test6
Kingsley
mlea
TUSF
50.0% W Static
Budgeted
0.0% J

Code size

O3 6 o2z eSS ZE 37|
Fig. 6. Code size of memory allocators.

9|8t Budgeted M 22| Y7

(124)

0|53 2

allocator are types of fast allocators. The efficiency
of Testd and Testb was always the same, but their
execution times were different.

Fig. 6 shows the code size of the memory
allocators. The code size of each allocator is
measured after compiling them with ARM
RVCT2.2"". The code size of the budgeted allocator
is quite large because it is composed of two
allocators. However, the code size of memory
allocators is usually much smaller than the required
memory size R,,, and the code size overhead
becomes negligible. Fig. 7 shows R,,,, plus the code
size of memory allocators when S; of workload5 is
changed. To figure out the R,,,, when the code size
of memory allocators is negligible, S; of workloads is
reduced. For example, R,,,.. plus the code size of the

budgeted allocator is 8 KB when .5; of workload is

250.0%

200.0%

= Testl
R Test2
B Test3

150.0% A
A Tests

Tests

& Testo

Kingsley
100.0% -
#lea

- TLSF
Static

50.0% # Budgeted
B a

0.0% -

8K

16K 32K

a3 7. E 2 workioadsel S7F <o 200u) Ee m 2
dze| IS A2t ZE F37(9 & XE
2 Sakll w2 2} Hza| SEIEL Rt
IE 379 &8 LIEpACY

Fig. 7. Required memory size Ama pius code sizes of

various memory allocators when S; of workload5
in Table 2 is reduced by about 200 times. The
x-axis shows the Amnx plus code size of the
budgeted allocator for different S; of workloadb.

2008 32 HxIBEE =2X M 45 HSCH A2 3

reduced by about 200 times from the Table 2. Once
R, is larger than 16 KB, the required memory
size of the budgeted allocator becomes the smallest.

Considering that R,,,, for normal applications is

usually more than 1 MB, the code size overhead of
the budgeted allocator is negligible.

VI. Conclusion

A dynamic memory allocator called a budgeted
allocator is proposed to enhance memory efficiency
embedded applications running
during the whole lifetime of the system. The
budgeted allocator has a dedicated storage for
predetermined sizes of objects. Only exact size of
objects can be allocated in the dedicated storage and
all other objects are allocated in the shared storage

for continuously

that is managed by a general purpose dynamic
memory allocator. In this way, the overal
fragmentation can be significantly reduced. The
budgeted allocator is compared with ten previously
proposed allocators for five different workloads. Qur
experiments show that the budgeted allocator always
requires least memory size for all cases. It requires
89 %~495 % less memory than the Lea allocator
that shows steady and good memory efficiency
throughout the experiments.

Reference

(1] M. Masmano et al, “TLSF: a New Dynamic
Memory Allocator for Real-Time Systems,” in
Proc. of Euromicro Conference on Real-Time
Systems, pp,.79-86, Catania, Italy, June, 2004.

P. Wilson et al, “Dynamic Storage Allocation: A
Survey and Critical Review,” Technical Report,

[2]

Department of Computer Science, Univ. of
Texas, Austin, 1995,
[3] D. Atienze et al, “Dynamic Memory

Management Design Methodology for Reduced
Memory Footprint in Multimedia and Wireless
Network Applications,” in Proc o Design,
Automation and Test in Europe, pp532-537,
Acropolis, France, April, 2004.

[4] H Zhe et al, “Design and Realization of

(12%)

69

Efficient Memory Management for Embedded
Real-Time Application,” in Proc of International
Conference on ITS Telecommunications,
pp.174-177, Chengdu, China, June, 2006.
D. Lea, A memory allocator,
http://g.oswego.edu/dl/html/malloc.html
E. Berger, B. Zom, and K McKinley,
“Reconsidering Custom Memory Allocation,” in
Proc. of ACM Conference on Object-Oriented
Programming, Systems, Languages, and
Applications, pp.1-12, Seattle, USA, November,
2002.

[5] Available:

(6]

[71 E. Berger, B. Zom, and K McKinley,
“Composing High~Performance Memory
Allocators,” in Proc o ACM SIGPLAN

Conference on Programming Language Design
and Implementation, pp.114-124, Snowbird, USA,
June, 2001.

M. Seid and B. Zorn, “Segregating Heap

Objects by Reference Behavior and Lifetime,” in

Proc of International Conference on

Architectural ~ Support for Programming

Languages and Operating Systems, pp.12-23,

San Jose, USA, October, 1998

Delorie software, Available:

http://www.delorie.com

[10] RVCT 2.2. Available: http:/www.arm.com

[11] M. Tofte and J. Talpin, “Region-Based Memory
Management,” in Information and Computation,
Volume 132, Issue 2, pp. 109-176, February,
1997.

[12] Y. Hasan and J. Chang, “A Hybrid Allocator,” in
Proc o IEEE International Symposium on
Performance Analysis of Systems and Software,
pp.214-222, Austin, USA, March, 2003.

(13]]. Bonwick, “The Slab Allocator: An
Object-Caching Kernel Memory Allocator, ” in
Proc. o USENIX Technical Conference,
pp.87-98, Boston, USA, June, 1994.

[14] B. Zom and D. Grunwald, “Evaluating Models of
Memory Allocation,” in ACM Transactions on
Modeling and Computer Simulation, Volume 4,
Issue 1, pp.107-131, January, 19%4.

[8]

(9]

70 s M-S 22 Budgeted H 22| Y7 0|58 ¢

S IPN R |
ol & (A3
19919 QA AAF e

of & 5(439)
2000 N st AFE T}

AL £4. Al 4.
2003 MEdida HFEFE 1998 Univ. of Michigan, Ann
AL E4. Arbor At £4.

20033 ~dA AR A7 2002'd Univ. of Michigan, Ann

/ o &

7 - Arbor ¥rAL E9.
<F@#AEor : ESL design, MPSoC, SoC 1991'd ~ 19959 A4 AA A7
architecture, embedded system> 20033 ~dA AR A9

<FHAESE . MPSoC, SoC architecture,

C-level system modeling for fast hardware and
software co-simulation, system-level power
analysis and optimization, behavioral synthesis,
and high-level testing>

(126)

