DOI QR코드

DOI QR Code

An Experimental Study on the Swimming Performance of Pale Chub(Zacco platypus)

피라미의 유영특성에 관한 실험적 연구

  • 박성용 (명지대학교 토목.환경공학과) ;
  • 김서준 (명지대학교 토목.환경공학과) ;
  • 이승휘 (호남대학교 생명과학과) ;
  • 윤병만 (명지대학교 토목.환경공학과)
  • Published : 2008.04.30

Abstract

The local migration or movement behavior of fishes in streams are related to feeding, spawning, growing, dispersing, and refuging. The pale chub (Zacco platypus) is a dominant species that migrates locally and inhabits in river and stream in Korea. However, dams, weirs, culverts and other regulatory structures are physical barriers that limit fish movement and fragment habits and populations. If main stream and off-channel habitats are connected with culverts, they would restrict the small fish as pale chub movement due to the high flow velocities and low depths. But in Korea, there is no experimental study to evaluate the swimming performance of species in Korea. Therefore, it is difficult to proposed that design guidelines for pass fishes through culverts. The purpose of this experimental study is to evaluate the swimming performance of pale chubs. A series of swimming performance test has been used in both of the fixed velocity and the incremental velocity methods in an experimental flume. As a result, the critical swimming speed for pale chub(body length 8.9 cm) was found to be about 0.7 m/s. Therefore, the flow velocity for culvert design in the low flow condition should not be exceed the its swimming ability, especially 0.7 m/s for pale chubs(body length 8.9 cm). And the minimum depth for culvert design in the low flow condition should not be lower than the fish body height add a dorsal fin height.

어류는 생존과 번식을 위해 회유 또는 이동을 하며, 이러한 회유나 이동은 어종에 따라 넓은 범위에서 이루어 질수도 있고 국지적으로 이루어 질 수도 있다. 피라미는 한국의 강과 하천에 우점종으로 서식하는 어종이다. 그러나 하천에 설치된 댐, 보, 암거 등은 어류가 이동하거나 번식하는데 많은 장애가 되고 있다. 실제로 어류 서식처간의 연결부가 배수암거(culvert)로 설치되어 있는 경우에는 평상시 피라미와 같이 몸집이 작은 어류가 이동하는데 장애를 줄 정도의 빠른 유속과 낮은 수심이 발생되고 있다. 그러나 국내에서는 국내 하천에 서식하고 있는 민물고기의 유영특성에 관한 연구가 충분치 않아 현실적으로 어도기능을 위한 합리적인 배수암거 설계기준을 마련하기가 어려운 실정이다. 본 연구의 목적은 배수암거의 평상시 어도기능을 위한 설계유속을 제시하기 위해 국내 하천의 우점종이자 국지회유성 어종인 피라미의 유영특성을 분석하고자 함이다. 피라미의 유영특성을 파악하기 위한 실험은 증진유속방법(incremental velocity test)과 고정유속방법(fixed velocity test)을 병행하여 수행하였다. 실험 결과 피라미(체장 8.9cm)의 유영특성 중 한계유영속도는 0.7 m/s 정도로 나타났다. 따라서 홍수기를 제외한 평상시 유량조건에서 배수암거 설계유속은 피라미(체장 8.9cm)를 대상어종으로 할 경우 0.7 m/s 를 초과하지 않아야 할 것으로 판단된다. 최소수심은 등지느러미까지 충분히 물속에 잠길 수 있는 수심이 필요한 것으로 파악되었다.

Keywords

References

  1. 김익수 (2002). 한국의 민물고기. 교학사
  2. 한국수자원학회 (2005a). 하천설계기준.해설 <계획편>
  3. 해양수산부 (2004). 하천에서의 수산자원 보호를 위한 어도 시설 표준설계.시공 등 표준모형개발 및 운영.관리제도 연구
  4. Anderson, R. O. and Gutreuter, S. J. (1983). Length, weight, and associated structural indices. Pages 283-300 in L.A. Neilsen and D.L. Johnson, editors. Fisheries Techniques. The American Fisheries Society, Bethesda, MD
  5. Bainbridge, R. (1960). “Speed and stamina in three fish.” J. Exp. Biol. Vol. 37, pp. 129-153
  6. Baxter, R. M. (1977). “Environmental effects of dams and impounments.” Annual Review of Ecology and Systematics, Vol. 8, pp. 255-283 https://doi.org/10.1146/annurev.es.08.110177.001351
  7. Beamish, F. W. H. (1966), “Swimming endurance of some Northwest Atlantic fishes.” J. Fish. Res. Bd Can., Vol. 23, pp. 341-347 https://doi.org/10.1139/f66-028
  8. Beamish, F. W. H. (1968) “Glycogen and lactic acid concentrations in Atlantic cod (Gadus morhua) in relation to exercise.” J. Fish. Res. Bd Can., Vol. 25, pp. 837-851 https://doi.org/10.1139/f68-079
  9. Beamish, F. W. H. (1978). “Swimming capacity.” Fish Physiology, Vol. VII. pp. 101-187
  10. Blaxter, J. H. S. (1969). “Swimming speeds of fish.” FAO Fish. Rep. 62, Proc. FAO Conference on fish behaviour in relation to fishing techniques and tactics. Bergen 19-27 October 1967
  11. Brett, J. R. (1964). “The respiration metabolism and swimming performance of young sockeye salmon.” J. Fish. Res. Bd. Can, Vol. 21, pp. 1183-1226 https://doi.org/10.1139/f64-103
  12. Brett, J. R. (1967). “Swimming performance of sockeye salmon (Oncorhynchus nerka) in relation to fatigue time and temperature.” J. Fish. Res. Bd. Can, Vol. 24, pp. 1731-1741 https://doi.org/10.1139/f67-142
  13. Broughton, N. M., Goldspink, G. and Jones, N. V. (1980) “The effect of training on the lateral musculature of O-group roach, Rutilus rutilus (L.), and their fatigue in subsequent exercise tests.” J. Fish Biol., Vol. 17, pp. 209-217 https://doi.org/10.1111/j.1095-8649.1980.tb02754.x
  14. Colavecchia, M. and Katopodis, C. (1998). “Measurement of burst swimming performance in wild Atlantic salmon (Salmo salarl.) using digital telemetry.” Regul. Rivers: Res. Mgmt., Vol. 14, pp. 41-51 https://doi.org/10.1002/(SICI)1099-1646(199801/02)14:1<41::AID-RRR475>3.0.CO;2-8
  15. Davison, W. and Goldspink, G. (1984). “The cost of swimming for two teleost fish.” New. Z. J. Zool., Vol. 11, pp. 225-232 https://doi.org/10.1080/03014223.1984.10423760
  16. Farrell, A. P. and Steffensen, J. F. (1987) “An analysis of the energetic costs of the branchial and cardiac pumps during sustained swimming.” Fish Physiol. Biochem., Vol. 4, pp. 73-79 https://doi.org/10.1007/BF02044316
  17. Fausch, K. D. and Young, M. K. (1995). Evolutionary significant units and movement of resident stream fishes: a cautionary tale. Evolution and the aquatic ecosystem : defining unique units in population conservation. Ed. J. L. Nielson. American Fisheries Society, Symposium 17 : Bethesda, Maryland
  18. Furniss, M., Love, M., Firor, S., Moynan, K., Llanos, A., Guntle. and Gubernick, R. (2006). FishXing 3: User manual and reference. Software and learning systems for fish passage at culverts. Six Rivers National Watershed Interactions Team, Eureka, CA
  19. Hammer C., (1995). "Fatigue and exercise tests with fish." Comp. Biochem. Physiol., Vol. 112A, pp. 1-20 https://doi.org/10.1016/0300-9629(95)00060-K
  20. Harris, J.H. (1984). “Impoundment of coastal drainages of south-eastern Australia, and a review of its relevance to fish migrations.” Aust. Zool, Vol. 21, pp. 235-250
  21. Harvey, B. C. (1991). “Interactions among stream fishes: predator induced habitat shifts and larval survival.” Oecologia, Vol. 87, pp. 29-39 https://doi.org/10.1007/BF00323776
  22. Hunter, J. R. (1971). “Sustained speed of jack mackerel, Trachurus symmetricus.” Fish. Bull., Vol. 69, pp. 267-271
  23. Jacobs, T. A. (1990). River Regulation. In The Murray(Ed. D. Eastburn), pp. 38-58
  24. Jones, D. R., Kiceniuk, J. W. and Bamford, O. S. (1974). “Evaluation of the swimming performance of several fish species from the Mackenzie River.” J. Fish. Res. Bd, Can., Vol. 31, pp. 1641-1647 https://doi.org/10.1139/f74-206
  25. Krueger, H.M., Saddler, J.B., Chapman, G.A., Tinsley, I.J. and Lowry, R.R. (1968). “Bioenergetics, exercise, and fatty detection and auantitative estimation of sublethal noisonacids of fish.” Am. Zool., Vol. 8, pp. 119-129 https://doi.org/10.1093/icb/8.1.119
  26. Mallen-Cooper, M. (2001). Fish passage in off-channel habitats of the Lower Murray River. Part 1. Overview of fish biology and fish passage. Wetland Care Australia, NSW
  27. Mallen-Cooper, M., Stuart, I. G., Hides-Pearson, F., and Harris, J. H. (1995). Fish migration in the Murray River and assessment of the Torrumbarry fishway. Final Report, NRMS Project N002
  28. McKeown, B. A. (1984). Fish Migration. (Timber Press: USA)
  29. Peake, S., F.W.H. Beamish, et. al. (1997). "Relating swimming performance of lake sturgeon, Acipenser fulvescens, to fishway design". Can. J. Fish. Aquat. Sci., Vol. 54, pp. 1361-1366 https://doi.org/10.1139/cjfas-54-6-1361
  30. Rulifson, R. A. (1977). “Temperature and water velocity effects on the swimming performance of young-of-theyear striped mullet (Mugil cephalus), spot (Leiostomus xanthurus), and pinfish (Lagodon rhomboides).” J. Fish. Res. Bd. Can., Vol. 34, pp. 2316-2322 https://doi.org/10.1139/f77-310
  31. Webb, P. W. (1975). “Hydrodynamics and energetics of fish propulsion.” Bull. Fish. Res. Bd. Can., Vol. 190, p. 159
  32. Webb, P.W. (1984). “Form and function in fish swimming.” Sci. Amer., Vol. 251, pp. 72-82

Cited by

  1. Integrative assessment of biomarker responses in pale chub (Zacco platypus) exposed to copper and benzo[a]pyrene vol.92, 2013, https://doi.org/10.1016/j.ecoenv.2013.02.010