DOI QR코드

DOI QR Code

Impact Assessment of Climate Change on Extreme Rainfall and I-D-F Analysis

기후변화가 극한강우와 I-D-F 분석에 미치는 영향 평가

  • 김병식 (한국건설기술연구원 수자원연구실) ;
  • 김보경 (한국건설기술연구원 수자원연구실) ;
  • 경민수 (인하대학교 토목공학과) ;
  • 김형수 (인하대학교 토목공학과)
  • Published : 2008.04.30

Abstract

Recently, extreme precipitation events beyond design capacity of hydraulic system have been occurred and this is the causes of failure of hydraulic structure for flood prevention and of severe flood damage. Therefore it is very important to understand temporal and spatial characteristics of extreme precipitation events as well as expected changes in extreme precipitation events and distributional characteristics during design period under future climate change. In this paper, climate change scenarios were used to assess the impacts of future climate change on extreme precipitation. Furthermore, analysis of future extreme precipitation characteristics and I-D-F analysis were carried out. This study used SRES B2 greenhouse gas scenario and YONU CGCM to simulate climatic conditions from 2031 to 2050 and statistical downscaling method was applied to establish weather data from each of observation sites operated by the Korean Meteorological Administration. Then quantile mapping of bias correction methods was carried out by comparing the simulated data with observations for bias correction. In addition Modified Bartlett Lewis Rectangular Pulse(MBLRP) model (Onof and Wheater, 1993; Onof 2000) and adjust method were applied to transform daily precipitation time series data into hourly time series data. Finally, rainfall intensity, duration, and frequency were calculated to draw I-D-F curve. Although there are 66 observation sites in Korea, we consider here the results from only Seoul, Daegu, Jeonju, and Gwangju sites in this paper. From the results we found that the rainfall intensity will be increased and the bigger intensity will be occurred for longer rainfall duration when we compare the climate conditions of 2030s with present conditions.

최근 수공시설물의 설계규모를 넘어서는 극한 강우사상이 발생하여 홍수방어를 위하여 구축된 수리구조물이 파괴 되는 등 많은 홍수피해가 발생하고 있다. 따라서 극한 강우사상의 시공간적 발생 특성을 파악하고 미래의 기후변화하에서 극한강우사상이 어떻게 변화하고 설계수명기간(Design period)동안 분포 특성이 어떻게 변화할지를 이해하는 것은 매우 중요하다. 이에 본 논문에서는 미래의 기후변화가 극한 강우에 어떠한 영향을 미치는지를 평가하기 위해 기후변화 시나리오를 이용하여 미래의 극한강우의 특성 분석과 I-D-F 분석을 실시하였다. 본 연구에서는 SRES B2 온난화가스 시나리오와 YONU CGCM 를 이용하여 2030s(2031-2050)를 모의하였으며 통계학적 축소기법을 적용하여 우리나라에 위치한 기상청 산하 관측소별로 일 기상자료를 구축하였다. 또한, 이를 과거 관측 자료와 비교하여 Quantile Mapping 방법으로 편이보정을 실시하였고, 구형펄스(Modified Bartlett Lewis Rectangular Pulse, MBLRP) 모형(Onof과 Wheater, 1993; Onof 2000)과 분해기법(adjust method)을 적용하여 일 강우 시계열자료를 시 강우 시계열 자료로 변환하였으며 지속기간별 빈도별 강우량을 산정하여 I-D-F 곡선을 작성하였다. 본 논문에서는 66개 관측소 중에서 서울, 대구, 전주, 광주 지점의 결과만을 수록하였으며 그 결과 거의 모든 지점에서 현재와 비교하였을 때 지속기간이 길어질수록 강우강도가 증가함을 확인할 수 있었다.

Keywords

References

  1. 김병식 (2005). 기후변화에 따른 유역의 수문요소 및 수자원 영향평가, 박사학위 논문, 인하대학교
  2. 김병식, 서병하, 김남원 (2003). “전이함수모형과 일기발생모형을 이용한 유역규모 기후변화시나리오의 작성.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제3호, pp. 345-363
  3. 안재현, 유출성, 윤용남 (2001). “GCM 결과를 이용한지구온난화에 따른 대청댐 유역의 수문환경 분석.” 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 335-345
  4. 오재호, 홍성길 (1995). “대기중 $CO_2$ 증가에 따른 한반도 강수량 변화.” 한국수자원학회지, 한국수자원학회, 제28권, 제3호, pp. 143-157
  5. 윤용남 (2001). 공업수문학, 13장 추계학적 모의발생기법, 청문각, p. 545
  6. 윤용남, 유철상, 이재수, 안재현 (1999). “지구온난화에따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 1.연/월강수량의 변화에 따른 일강수량 분포의 변화분석.” 한국수자원학회논문집, 한국수자원학회, 제32권, 제6호, pp. 617-625
  7. 윤용남, 유철상, 오세정, 장수형 (2004). “기후변화에 따른 설계강수량의 변화추정에 관한 연구.” 한국수자원학회학술발표회 논문집, 한국수자원학회, pp. 849-853
  8. 한국건설기술연구원(2000). 수자원계획의 최적화연IV : 기후변화에 따른 수자원계Ghlr의 영향평가, 건설교통부, 한국수자원공사
  9. Boorman, D.B. and Sefton, C.E..M. (1997). "Recognizing the uncertainy in the quantification of the effect of climate change on hydrological response." Climate change, Vol. 35, pp. 415-434 https://doi.org/10.1023/A:1005372407881
  10. Durman, C.F., Gregory, J.M., Hassell, D.C., Jones, R.G. and Murphy, J.M. (2001). "A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates." Quarterly Journal of the Royal Meteorological Society, Vol. 127, No. 573, pp. 1005-1015 https://doi.org/10.1002/qj.49712757316
  11. Fowler, H.J., Kilsby, C.G. and Stunell, J. (2007). "Modeling the impacts of projected future climate change on water resources in north-west England." Hydrologic & Earth System Sciences, Vol. 11, No. 3, pp. 1115-1126 https://doi.org/10.5194/hess-11-1115-2007
  12. Fowler, H.J., Kilsby, C.G., (2003a). "A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000." International Journal of Climatology, Vol. 23, pp. 1313-1334 https://doi.org/10.1002/joc.943
  13. Fowler, H.J., Kilsby, C.G., (2003b). "Implications of changes in seasonal and annual extreme rainfall." Geophysical Research Letters, Vol. 30, No. 13, p. 1720 doi:10.1029/2003GL017327
  14. Gellens, D. and Roulin, E. (1998). "Streamflow reponse of Belgian catchment to IPCC climate change scenarios." Journal of hydrology, Vol. 210, pp. 242-258 https://doi.org/10.1016/S0022-1694(98)00192-9
  15. Griffith, G.M., Chambers, L.E.,Haylock, M.R., Mamtom, M.J., Nicholls, N., Baek, H.J., Choi, Y., Della-Marta, P.M., Gosal, A., Iga, N.,Lata, R., Laurent, V., Maitrepierre, L., Nakamigawa, H., Ouprasitwong, N., Solofa, D, Tahani, L., Thuy, T., Tibig, L., Trewin, B., Vediapan, K., and Zhai, P. (2005). "Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific Region." International Journal of Climatology, Vol. 25, pp. 1301-1330 https://doi.org/10.1002/joc.1194
  16. Hamlet, A.F., Lettenmaier, D.P. and Snover, A. (2003). "Climate change streamflow scenarios for critical period water planning studies : A technical methodology." Journal of Water Resources Planning and Management, in review
  17. Hashino, T., Bradley, A.A., and Schwartz, S.S. (2007). "Evaluation of bias-correction methods for ensemble stream flow volume forecasts." Hydrology and Earth System Science, Vol. 11, pp. 939-950 https://doi.org/10.5194/hess-11-939-2007
  18. Karlin, S. (1983). 11th R. A. Fisher Memorial Lecture. Lecture presented to the Royal Society, London
  19. Khaliq, M.N. and Cunnane, C. (1996). "Modeling point rainfall occurrences with the Modified Bartlett-Lewis Rectangular Pulse Model." Journal of Hydrology, Vol. 180, pp. 109-138 https://doi.org/10.1016/0022-1694(95)02894-3
  20. Kim, Byung Sik, Kim, Hung Soo, Seoh, Byung Ha, Kim, Na Won. (2007). "Impact of Climate Change on Water Resources in Yongdam Dam Basin, Korea." Stochastic Environmental Research and Risk Assessment(SERRA), Vol. 21, No. 4, pp.355-357 https://doi.org/10.1007/s00477-006-0070-5
  21. Kite, G.W. (1993). "Application of a land class hydrological model to climate change." Water Resour. Res. Vol. 29, pp. 2377-2384 https://doi.org/10.1029/93WR00582
  22. Klein Tank, A.M.G. and Konneb, G. P. (2003). "Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946-1999." Journal of Climate, Vol. 16, pp. 3665-3680 https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2
  23. Koutsoyannis, D. (1994). "A stochastic disaggregation method for design storm and flood synthesis." Journal of Hydrology, Vol. 156, pp. 193-225 https://doi.org/10.1016/0022-1694(94)90078-7
  24. Koutsoyannis, D. and Onof, C. (2001). "Rainfall disaggregation using adjusting procedures on a Poisson cluster model." Journal of Hydrology, Vol. 246, pp. 109-122 https://doi.org/10.1016/S0022-1694(01)00363-8
  25. Koutsoyiannis, D. (2003). "Climate change, the Hurst Phenonmenon and hydrological statistics." Hydrol. Sci. J., Vol. 48, No. 1, pp. 3-24 https://doi.org/10.1623/hysj.48.1.3.43481
  26. Kundzewicz, Z. W. (2004). Searching for change in hydrological data-Editorial Hydrol. Sci. J. Special Section: Detecting Change in Hydrological Data Vol. 49, No. 1, pp. 3-6
  27. Lindstrom, G. & Bergstrom, S. (2004). Runoff trends in Sweden: 1807-2002. Hydrol. Sci. J. Special Section: Detecting Change in Hydrological Data Vol. 49, No. 1, pp. 69-83 https://doi.org/10.1623/hysj.49.1.69.54000
  28. McGuffie, K., Henderson-Sellers, A., Holbrook, N., Kothavala, Z., Balachova, O. & Hoekstra, J. (1999). "Assessing simulations of daily temperature and precipitation variability with global climate models for present and enhanced greenhouse climates." Int. J. Climatol. Vol. 19, pp. 1-26 https://doi.org/10.1002/(SICI)1097-0088(199901)19:1<1::AID-JOC348>3.0.CO;2-T
  29. Mckerchar, A. I. and Henderson, R. D. (2003). "Shifts in flood and low-flow regimes in New Zealand due to interdecadal climate variations." Hydrol. Sci. J., Vol. 48, No. 4, pp. 637-654 https://doi.org/10.1623/hysj.48.4.637.51412
  30. Meehl, G. A. and Tebaldi, C. (2004). "More intense, more frequent and longer lasting heat waves in the 21st century." Science, Vol. 305, pp. 994-997 https://doi.org/10.1126/science.1098704
  31. Mirza, M.Q., Warrick, R.A., Ericksen, N.J. and Kenny, K.J. (1998). "Trend and persistence in precipitation in the Ganges, Brahmaputa and Meghna basina in the south asia." Hydrol.Sci. J., Vol. 43, No. 6, pp. 845-858 https://doi.org/10.1080/02626669809492182
  32. Onof, C and Wheater, H.S. (1993). "Modeling of British rainfall using a random parameter Bartlett-Lewis rectangular pulses model." Journal of Hydrology, Vol. 149, pp. 67-95 https://doi.org/10.1016/0022-1694(93)90100-N
  33. Onof, C. (2001). "Rainfall disaggregation using adjusting procedures on a Poisson cluster model." Journal of Hydrology, Vol. 246, pp. 109-122 https://doi.org/10.1016/S0022-1694(01)00363-8
  34. Onof, C. (2007). "Bartlett-Lewis (not Rectangular) Pulse Model." RAINMAP workshop, Sep. 13th-14th http://www.rainmap.rl.ac.uk/pdfs/sep2007_workshop/Onof.pdf
  35. Osborn, T.J., Hulme, M., (2002). "Evidence for trends in heavy rainfall events over the UK." Philosophical Transactions of the Royal Society, Series A, Vol. 360, pp. 1313-1325 https://doi.org/10.1098/rsta.2002.1002
  36. Osborn, T.J., Hulme, M., Jones, P.D., Basnett, T.A., (2000). "Observed trends in the daily intensity of United Kingdom precipitation." International Journal of Climatology, Vol. 20, pp. 347-364 https://doi.org/10.1002/(SICI)1097-0088(20000330)20:4<347::AID-JOC475>3.0.CO;2-C
  37. Palmer, R., Wiley, M and Kameenui, A. (2004). Will Climate Change Impact Water Supply and Demand In the Puget Sound?, Department of Civil and Environmental Engineering University of Washington, Seattle WA
  38. Panagoulia, D. and Dimou, G (1997). "Sensitivity of flood events to global climate change." Journal of hydrolgoy., Vol. 191, pp. 208-222 https://doi.org/10.1016/S0022-1694(96)03056-9
  39. Panofsy, H.A., and Brire, G.W. (1963). Some application of Statistics to Meteorology, Pennsylvania State University, University Park, Pennsylvania, p. 224
  40. Paturel, J. E., Ouedraogo, M., Servant, E., Mahe, G., Dezetter, A. and Boyer, J.F. (2003). "The concept of rainfall and streamflow nomals in West and Central Africa in a context of climate variability." Hydrol.Sci. J., Vol. 48, No. 1, pp. 125-137 https://doi.org/10.1623/hysj.48.1.125.43479
  41. Pongracz, R. Bogardi, I. and Duckstein, L. (2003). "Climate forcing of drought; a Central European example." Hydrol. Sci. J., Vol. 48, No. 1, pp. 39-50 https://doi.org/10.1623/hysj.48.1.39.43480
  42. Prudhomme, C., Jakob, D and Svensson, C. (2003). "Uncertainty and climate change impact on the flood regime of small UK catchment." Journal of hydrology, Vol. 277, pp. 1-23 https://doi.org/10.1016/S0022-1694(03)00065-9
  43. Rodriquez-Iturbe, I., Cox, D.R, and Isham, V. (1987). "Some models for rainfall based on stochastic point processes." Proceeding Royal Society London A, Vol. 410, pp. 269-288
  44. Rodriquez-Iturbe, I., Cox, D.R, and Isham, V. (1988). "A Point Process Models for Rainfall: Further developments." Proceedings of the Royal Society of London A, Vol. 417, pp. 283-298
  45. Saelthun, N.R., Aittoniemi, P., Bergstrom, S., Einarsson, K., Johannesson, T., Lindstom, G., Ohlsson, P. O., Thomsen, T. Vehrilainen B. and Aamodt, K. O (1998). "Climate change impacts on runoff and hydropower in the Nordic coundries." TemaNord, Vol. 552, p. 170
  46. Tate, E. Sutcliffe, J., Conway, D. and Farquharson, F. (2004). "Water balance of lake victoria; update to 2000 and climate change modelling to 2100." Hydrol. Sci. J., Vol. 49, No. 4, pp. 563-574 https://doi.org/10.1623/hysj.49.4.563.54422
  47. Wilby, R.L. and Dawson, C.W. (2001). "Using SDSM-A decision support tool for the assessment of regional climate change impacts." National Centre for Risk Analysis and Options Appraisal, UK Environment Agency
  48. Wood, A.W., Leung, L.R., Sridhar. V. and Lettenmaier, D.P. (2004). "Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs." Climatic Change, Vol. 62, Issue 1-3, pp. 189-216 https://doi.org/10.1023/B:CLIM.0000013685.99609.9e

Cited by

  1. The Impact Assessment of Climate Change on Design Flood in Mihochen basin based on the Representative Concentration Pathway Climate Change Scenario vol.15, pp.1, 2013, https://doi.org/10.17663/JWR.2013.15.1.105
  2. Climate Change Impact Analysis of Urban Inundation in Seoul Using High-Resolution Climate Change Scenario vol.48, pp.5, 2015, https://doi.org/10.3741/JKWRA.2015.48.5.345
  3. Bias Correction of RCP-based Future Extreme Precipitation using a Quantile Mapping Method ; for 20-Weather Stations of South Korea vol.54, pp.6, 2012, https://doi.org/10.5389/KSAE.2012.54.6.133
  4. Stochastic disaggregation of daily rainfall based on K-Nearest neighbor resampling method vol.49, pp.4, 2016, https://doi.org/10.3741/JKWRA.2016.49.4.283
  5. Assessment of Flood Vulnerability Based on CMIP5 Climate Projections in South Korea vol.51, pp.3, 2015, https://doi.org/10.1111/jawr.12283
  6. Two-dimensional Numerical Analysis for Debris Flows at Jecheon vol.15, pp.6, 2015, https://doi.org/10.9798/KOSHAM.2015.15.6.207
  7. Study of Direct Parameter Estimation for Neyman-Scott Rectangular Pulse Model vol.42, pp.11, 2009, https://doi.org/10.3741/JKWRA.2009.42.11.1017
  8. Determination of Flood Reduction Alternatives for responding to climate change in Gyeongan Watershed vol.18, pp.2, 2016, https://doi.org/10.17663/JWR.2016.18.2.154
  9. The Application Assessment of Future Design Rainfall Estimation Method Using Scale Properties vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.253
  10. Extreme Storm Estimation by Climate Change Using Precipitable Water vol.13, pp.1, 2013, https://doi.org/10.9798/KOSHAM.2013.13.1.121
  11. Web-Based Data Processing and Model Linkage Techniques for Agricultural Water-Resource Analysis vol.57, pp.5, 2015, https://doi.org/10.5389/KSAE.2015.57.5.101
  12. Ensemble Prediction of Future Design Rainfalls Considering Climate Change vol.12, pp.2, 2012, https://doi.org/10.9798/KOSHAM.2012.12.2.159
  13. Development of IDF Curves Based on RCP4.5 Scenario for 30-Reservoirs in South Korea vol.13, pp.6, 2013, https://doi.org/10.9798/KOSHAM.2013.13.6.145
  14. Prediction of Return Periods of Sewer Flooding Due to Climate Change in Major Cities vol.30, pp.1, 2016, https://doi.org/10.11001/jksww.2016.30.1.041
  15. Hydrological Assessment of Multifractal Space-Time Rainfall Downscaling Model: Focusing on Application to the Upstream Watershed of Chungju Dam vol.47, pp.10, 2014, https://doi.org/10.3741/JKWRA.2014.47.10.959
  16. The Estimation of Future Pump Capacity on the Urban Drainage System using Climate Change Scenario(RCP) vol.13, pp.2, 2013, https://doi.org/10.9798/KOSHAM.2013.13.2.299
  17. 1-day Probable Maximum Precipitation in accordance with AR5 RCPs in Korea vol.15, pp.4, 2015, https://doi.org/10.9798/KOSHAM.2015.15.4.273
  18. Prediction of debris flows in the Korean Oship River based on climate change scenarios vol.9, pp.1, 2018, https://doi.org/10.1080/19475705.2018.1467347
  19. 점강우모형을 이용한 미래 시간강우자료 생산 및 미래 강우유출수 분석 vol.18, pp.2, 2018, https://doi.org/10.9798/KOSHAM.2018.18.2.483
  20. Effect of RCM Temporal Resolution on Estimating Future IDF Curves vol.18, pp.4, 2018, https://doi.org/10.9798/KOSHAM.2018.18.4.341