여성생식기관에서 프로제스테론의 분자생물학적 기능

Molecular Regulation of Female Reproductive Tracts by Progesterone

  • 전용필 (성신여자대학교 생물학과, 기초과학연구소)
  • Cheon, Yong-Pil (Department of Biology, Institute for Basic Sciences, Sungshin Women's University)
  • 발행 : 2008.03.30

초록

키워드

참고문헌

  1. Bazer FW, Roberts RM, Thatcher WW. Actions of hormones on the uterus and effect on conceptus development. J Anim Sci 1979; 492: 35-45
  2. Greco TL, Duello TM, Gorski J. Estrogen receptors, estradiol, and diethylstilbestrol in early development: the mouse as a model for the study of estrogen receptors and estrogen sensitivity in embryonic development of male and female reproductive tracts. Endocr Rev 1993; 14: 59-71
  3. Tranguch S, Cheung-Flynn J, Daikoku T, Prapapanich V, Cox MB, Xie H, et al. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc Natl Acad Sci U S A 2005; 102: 14326-31 https://doi.org/10.1073/pnas.0505775102
  4. Toft D, Gorski J. A receptor molecule for estrogens: Isolation from the rat uterus and preliminary characterization. Proc Natl Acad Sci USA 1966; 55: 1574-81 https://doi.org/10.1073/pnas.55.6.1574
  5. Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW, DeSombre ER. A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci USA 1968; 83: 5424-8
  6. Tsai MJ, O'Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994; 63: 451-86 https://doi.org/10.1146/annurev.bi.63.070194.002315
  7. Watson CS, Bulayeve NN, Wozniak AL, Alyea RA. Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids 2007; 72: 124-34 https://doi.org/10.1016/j.steroids.2006.11.002
  8. O'Malley BW. The steroid receptor superfamily: More excitement predicted for the future. Mol Endocrinol 1990; 4: 364-9
  9. O'Malley BW, Conneely OM. Orphan receptors: In search of a unifiying hypothesis for activation. Mol Endocrinol 1992; 6: 1359-61 https://doi.org/10.1210/me.6.9.1359
  10. Ingraham HA, Redinbo MR. Orphan nuclear receptors adopted by crystallography. Curr Opin Struct Biol 2005; 15: 708-15 https://doi.org/10.1016/j.sbi.2005.10.009
  11. Blaustein JD, Lehman MN, Turcotte JC, Greene G. Estrogen receptors in dendrites and axon terminals in the guinea pig hypothalamus. Endocrinology 1992; 131: 281-90 https://doi.org/10.1210/en.131.1.281
  12. Bouchard P. Progesterone and the progesterone receptor. J Reprod Med 1999; 44: 153-7
  13. Cancela L, Nemere I, Norman AW. 1 alpha,25(OH)2 vitamin D3: a steroid hormone capable of producing pleiotropic receptor-mediated biological responses by both genomic and nongenomic mechanisms. J Steroid Biochem 1988; 30: 33-9 https://doi.org/10.1016/0022-4731(88)90073-8
  14. Blackmore PF, Neulen J, Lattanzio F, Beebe SJ. Cell surfacebinding sites for progesterone mediate calcium uptake in human sperm. J Biol Chem 1991; 266: 18655-9
  15. Li X, O'Malley BW. Unfolding the action of progesterone receptors. J Biol Chem 2003; 278: 39261-4 https://doi.org/10.1074/jbc.R300024200
  16. Moutsatsou P, Sekeris CE. Steroid receptors in the uterus: implications in endometriosis. Ann N Y Acad Sci 2003; 997: 209-22 https://doi.org/10.1196/annals.1290.024
  17. Vicent GP, Ballare C, Zaurin R, Saragiieta P, Beato M. Chromatin remodeling and control of cell proliferation by progestins via cross talk of progesterone receptor with the estrogen receptors and kinase signaling pathways. Ann NY Acad Sci 2006; 1089: 59-72 https://doi.org/10.1196/annals.1386.025
  18. McKenna NJ, O'Malley BW. Nuclear receptors, coregulators, ligands and selective receptor modulators: making sense of the patchwork quilt. Annals of the New York Academy of Sciences 2001; 949: 3-5
  19. Chen CW, Bielby H, Licence D, Smith SK, Print CG, Charnock-Jones DS. Quantitative cellular and molecular analysis of the effect of progesterone withdrawal in a murine model of decidualization. Biol Reprod 2007; 76: 871-83 https://doi.org/10.1095/biolreprod.106.057950
  20. Cheon YP, Li Q, Xu X, DeMayo FJ, Bagchi IC, Bagchi MK. A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol Endocrinol 2002; 16: 2853-71 https://doi.org/10.1210/me.2002-0270
  21. Chappell P, Schneider JS, Kim P, Xu M, Lydon JP, O'Malley BW, et al. Absence of gonadotropin surges and gonadotropinreleasing hormone self-priming in ovariectomized (ovx), estrogen (E2)-treated, progesterone receptor knockout (PRKO) mice. Endocrinology 1999; 140: 3653-8 https://doi.org/10.1210/en.140.8.3653
  22. Kao L-C, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, et al. Global gene profiling in human endometrium during the window of implantation. Endocrinology 2002; 143: 2119 -38 https://doi.org/10.1210/en.143.6.2119
  23. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery Jr CA, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995; 9: 2266-78 https://doi.org/10.1101/gad.9.18.2266
  24. Mani SK, Allen JMC, Lydon JP, Mulac-Jericevic B, Blaustein JD, DeMayo FJ, et al. Dopamine requires the unoccupied progesterone receptor to induce sexual behavior in mice. Mol Endocrinol 1996; 10: 1728-37 https://doi.org/10.1210/me.10.12.1728
  25. Tibbetts TA, DeMayo F, Rich S, Conneely OM, O'Malley BW. Progesterone receptors in the thymus are required for thymic involution during pregnancy and for normal fertility. PNAS 1999; 96: 12021-6 https://doi.org/10.1073/pnas.96.21.12021
  26. Suzuki T, Sasano H, Kimura N, Tamura M, Fukaya T, Yajima A, et al. Immunohistochemical distribution of progesterone, androgen and oestrogen receptors in the human ovary during the menstrual cycle: relationship to expression of steroidogenic enzymes. Hum Reprod 1994; 9: 1589-95 https://doi.org/10.1093/oxfordjournals.humrep.a138757
  27. Natraj U, Richards JS. Hormonal regulation, localization and functional activity of the progesterone receptor in granulosa cells of rat preovulatory follicles. Endocrinology 1993; 133: 761-9 https://doi.org/10.1210/en.133.2.761
  28. Park OK, Mayo KE. Transient expression of progesterone receptor messenger RNA in ovarian granulose cells after the preovulatory luteinizing hormone surge. Mol Endocrinol 1991; 5: 967-78 https://doi.org/10.1210/mend-5-7-967
  29. Robker RL, Russell DL, Espey LL, Lydon JP, O'Malley BW, Richards JS. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci USA 2000; 97: 4689-94 https://doi.org/10.1073/pnas.080073497
  30. Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci USA 2003; 100: 9744-9 https://doi.org/10.1073/pnas.1732707100
  31. Palanisamy GS, Cheon YP, Kim J, Kannan A, Li Q, Sato M, et al. A Novel Pathway Involving Progesterone Receptor, Endothelin-2, and Endothelin Receptor B Controls Ovulation in Mice. Mol Endocrinol 2006; 20: 2784-95 https://doi.org/10.1210/me.2006-0093
  32. Mulac-Jericevic B, Conneely OM. Reproductive tissue selective actions of progesterone receptors. Reproduction 2004; 128: 139-46 https://doi.org/10.1530/rep.1.00189
  33. Too CKL, Bryant-Greenwood GD, Greenwood FC. Relaxin increases the release of plasminogen activator, collagenase, and proteoglycanase from rat granulosa cells in vitro. Endocrinology 1984; 115: 1043-50 https://doi.org/10.1210/endo-115-3-1043
  34. Yki-Jarvinen H, Wahlstrom T, Seppala M. Human endometrium contains relaxin that is progesterone-dependent. Acta Obstet Gynecol Scand 1985; 64: 663-5 https://doi.org/10.3109/00016348509158210
  35. Ko CM, Gieske MC, Al-Alem L, Hahn YK, Su W, Gong MC, et al. Endothelin-2 in Ovarian Follicle Rupture. Endocrinology 2006; 147: 1770-9 https://doi.org/10.1210/en.2005-1228
  36. Kim J, Sato M, Li Q, Lydon JP, Demayo FJ, Bagchi IC, et al. Peroxisome proliferator-activated receptor gamma is a target of progesterone regulation in the preovulatory follicles and controls ovulation in mice. Mol Cell Biol 2008; 28: 1770-82 https://doi.org/10.1128/MCB.01556-07
  37. Sriraman V, Rudd MD, Lohmann SM, Mulders SM, Richards JS. Cyclic guanosine 5-monophosphate-dependent protein kinase II is induced by luteinizing hormone and progesterone dependent mechanisms in granulosa cells and cumulus oocyte complexes of ovulating follicles. Mol Endocrinol 2006; 20: 348-61 https://doi.org/10.1210/me.2005-0317
  38. LaPolt PS, Leung K, Ishimaru R, Tafoya MA, You-hsin Chen J. Roles of cyclic GMP in modulating ovarian functions. Reprod Biomed Online 2003; 6: 15-23 https://doi.org/10.1016/S1472-6483(10)62051-2
  39. Jablonka-Shariff A, Olson LM. Nitric oxide is essential for optimal meiotic maturation of murine cumulusoocyte complexes in vitro. Mol Reprod Dev 2000; 55: 412-21 https://doi.org/10.1002/(SICI)1098-2795(200004)55:4<412::AID-MRD9>3.0.CO;2-W
  40. Feil R, Lohmann SM, de Jonge H, Walter U, Hofmann F. Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ Res 2003; 93: 907-16 https://doi.org/10.1161/01.RES.0000100390.68771.CC
  41. Gambaryan S, Butt E, Marcus K, Glazova M, Palmetshofer A, Guillon G, et al. cGMP-dependent protein kinase type II regulates basal level of aldosterone production by zona glomerulosa cells without increasing expression of the steroidogenic acute regulatory protein gene. J Biol Chem 2003; 278: 29640-8 https://doi.org/10.1074/jbc.M302143200
  42. Shimada M, Yanai Y, Okazaki T, Yamashita Y, Sriraman V, Wilson MC, et al. Synaptosomal-associated protein 25 gene expression is hormonally regulated during ovulation and is involved in cytokine/chemokine exocytosis from granulosa cells. Mol Endocrinol 2007; 21: 2487-502 https://doi.org/10.1210/me.2007-0042
  43. Iwamasa J, Shibata S, Tanaka N, Matsuura K, Okamura H. The relationship between ovarian progesterone and proteolytic enzyme activity during ovulation in the gonadotropin-treated immature rat. Biol Reprod 1992; 46: 309-13 https://doi.org/10.1095/biolreprod46.2.309
  44. Doyle KM, Russell DL, Sriraman V, Richards JS. Coordinate transcription of the ADAMTS-1 gene by luteinizing hormone and progesterone receptor. Mol Endocrinol 2004; 18: 2463-78 https://doi.org/10.1210/me.2003-0380
  45. Sriraman V, Richards JS. Cathepsin L gene expression and promoter activation in rodent granulosa cells. Endocrinology 2004; 145: 582-91 https://doi.org/10.1210/en.2003-0963
  46. Sriraman V, Eichenlaub-Ritter U, Bartsch J, Rittger A, Mulders SM, Richards JS. Regulated expression of ADAM8 (a Disintegrin and Metalloprotease 8) in the mouse ovary: Evidence for a regulatory role of luteinizing hormone, progesterone receptor, and epidermal growth factor-like growth factors. Biol Reprod, 2008. Epub
  47. Aladin Chandrasekher Y, Melner MH, Nagalla SR, Stouffer RL. Progesterone receptor, but not estradiol receptor, messenger ribonucleic acid is expressed in luteinizing granulosa cells and the corpus luteum in rhesus monkeys. Endocrinology 1994; 135: 307-14
  48. Richards JS, Russell DL, Ochsner S, Hsieh M, Doyle KH, Falender AE, et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res 2002; 57: 195-220 https://doi.org/10.1210/rp.57.1.195
  49. Richards JS, Russell DL, Ochsner S, Espey LL. Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu Rev Physiol 2002; 64: 69-92 https://doi.org/10.1146/annurev.physiol.64.081501.131029
  50. Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, et al. Embryo implantation. Dev Biol 2000; 223: 217-37 https://doi.org/10.1006/dbio.2000.9767
  51. Clarke CL, Sutherland RL. Progestin regulation of cellular proliferation. Endocr Rev 1990; 11: 266-301 https://doi.org/10.1210/edrv-11-2-266
  52. Kalra SP, Kalra PS. Temporal interrelationships among circulating levels of estradiol, progesterone and LH during the rat estrous cycle: effects of exogenous progesterone. Endocrinology 1974; 95: 1711-8 https://doi.org/10.1210/endo-95-6-1711
  53. Strauss JF, Gurpide E. The endometrium: regulation and dysfunction. In: Yen SSC, RB Jaffe RB, editor. Reproductive endocrinology. Philadelphia: WB Saunders; 1991. p. 309-56
  54. Spencer TE, Bazer FW. Temporal and spatial alterations in uterine estrogen receptor and progesterone receptor gene expression during the estrous cycle and early pregnancy in the ewe. Biol Reprod 1995; 53: 1527-43 https://doi.org/10.1095/biolreprod53.6.1527
  55. Mangal RK, Wiehle RD, Poindexter AN 3^{rd}, Weigel NL. Differential expression of uterine progesterone receptor forms A and B during the menstrual cycle. J Steroid Biochem Mol Biol 1997; 63: 195-202 https://doi.org/10.1016/S0960-0760(97)00119-2
  56. Mote PA, Balleine RL, McGowan EM, Clarke CL. Hetero geneity of progesterone receptors A and B expression in human endometrial glands and stroma. Hum Reprod 2000; 15 Suppl 3: 48-56 https://doi.org/10.1093/humrep/15.suppl_3.48
  57. Tan J, Paria BC, Dey SK, Das SK. Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse. Endocrinology 1999; 140: 5310-21 https://doi.org/10.1210/en.140.11.5310
  58. Tibbetts TA, Mendoza-Meneses M, O'Malley BW, Conneely OM. Mutual and intercompartmental regulation of estrogen receptor and progesterone receptor expression in the mouse uterus. Biol Reprod 1998; 59: 1143-52 https://doi.org/10.1095/biolreprod59.5.1143
  59. Slayden OD, Keator CS. Role of progesterone in nonhuman primate implantation Semin Reprod Med 2007; 25: 418-30 https://doi.org/10.1055/s-2007-991039
  60. Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 2000; 289: 1751-4 https://doi.org/10.1126/science.289.5485.1751
  61. Chen C, Spencer TE, Bazer FW. Expression of hepatocyte growth factor and its receptor c-met in the ovine uterus. Biol Reprod 2000; 62: 1844-50 https://doi.org/10.1095/biolreprod62.6.1844
  62. Chen C, Spencer TE, Bazer FW. Fibroblast growth factor-10: a stromal mediator of epithelial function in the ovine uterus. Biol Reprod 2000; 63: 959-66 https://doi.org/10.1095/biolreprod63.3.959
  63. Cheon YP, DeMayo FJ, Bagchi MK, Bagchi IC. Induction of cytotoxic T-lymphocyte antigen-2beta, a cysteine protease inhibitor in decidua: a potential regulator of embryo implantation. J Biol Chem 2004; 279: 10357-63 https://doi.org/10.1074/jbc.M309434200
  64. Kim HS, Cheon YP. Spatio-temporal expression and regulation of a novel dermatopontin in early pregnant mouse uterus. Mol Cell 2006; 22: 262-8
  65. Li Q, Cheon YP, Kannan A, Shankar S, Bagchi IC, Bagchi MK. A novel pathway involving progesterone receptor, 12/15-lipoxygenase-derived eicosanoids, and peroxisome proliferator-activated receptor gamma regulates implantation in mice. J Biol Chem 2004; 279: 10357-63 https://doi.org/10.1074/jbc.M309434200
  66. Mantena SR, Kannan A, Cheon YP, Li Q Johnson PF, Bagchi IC, et al. C/EBPbeta is a critical mediator of steroid hormone-regulated cell proliferation and differentiation in the uterine epithelium and stroma. Proc Natl Acad Sci U S A 2006; 103: 1870-5 https://doi.org/10.1073/pnas.0507261103
  67. Gray CA, Adelson DL, Bazer FW, Burghardt RC, Meeusen EN, Spencer TE. Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc Natl Acad Sci USA 2004; 101: 7982-7 https://doi.org/10.1073/pnas.0402669101
  68. Satterfield MC, Bazer FW, Spencer TE. Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus. Biol Reprod 2006; 75: 289-96 https://doi.org/10.1095/biolreprod.106.052944
  69. Leslie MV, Hansen PJ. Progesterone-regulated secretion of the serpin-like proteins of the ovine and bovine uterus. Steroids 1991; 56: 589-97 https://doi.org/10.1016/0039-128X(91)90022-N
  70. Stewart MD, Johnson GA, Gray CA, Burghardt RC, Schuler LA, Joyce MM, et al. Prolactin receptor and uterine milk protein expression in the ovine endometrium during the estrous cycle and pregnancy. Biol Reprod 2000; 62: 1779-89 https://doi.org/10.1095/biolreprod62.6.1779
  71. Liu WJ, Hansen PJ. Effect of the progesterone-induced serpinlike proteins of the sheep endometrium on natural-killer cell activity in sheep and mice. Biol Reprod 1993; 49: 1008-14 https://doi.org/10.1095/biolreprod49.5.1008
  72. Cheon YP, Gye MC, Kim CH, Kang BM, Chang YS, Kim SR, et al. Role of actin filaments in the hatching process of mouse blastocyst. Zygote 1999; 7: 123-9 https://doi.org/10.1017/S0967199499000477
  73. O'Sullivan CM, Liu SY, Rancourt SL, Rancourt DE. Regulation of the strypsin-related proteinase ISP2 by progesterone in endometrial gland epithelium during implantation in mice. Reproduction 2001; 122: 235-44 https://doi.org/10.1530/rep.0.1220235
  74. Hoffman LH, Olson GE, Carson DD, Chilton BS. Progesterone and implanting blastocysts regulate Muc1 expression in rabbit uterine epithelium. Endocrinology 1998; 139: 266 -71 https://doi.org/10.1210/en.139.1.266
  75. Meseguer M, Aplin JD, Caballero-Campo P, O'Connor JE, Martin JC, Remohi J, et al. Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol Reprod 2001; 64: 590-601 https://doi.org/10.1095/biolreprod64.2.590
  76. Cheon YP, Xu X, Bagchi MK, Bagchi IC. Immune-responsive gene 1 (IRG1) is a novel target of progesterone receptor and plays a critical role during implantation in the mouse. Endocrinology 2003; 144: 5623-30 https://doi.org/10.1210/en.2003-0585
  77. Song G, Kim J, Bazer FW, Spencer TE. Progesterone and interferon Tau regulate hypoxia-inducible factors (HIFs) in the endometrium of the ovine uterus. Endocrinology 2008; Epub
  78. Ding T, Song H, Wang X, Khatua A, Paria BC. Leukemia inhibitory factor ligand-receptor signaling is important for uterine receptivity and implantation in golden hamsters (Mesocricetus auratus). Reproduction 2008; 135: 41-53 https://doi.org/10.1530/REP-07-0013
  79. Hama K, Aoki J, Bandoh K, Inoue A, Endo T, Amano T, et al. Lysophosphatidic receptor, LPA3, is positively and negatively regulated by progesterone and estrogen in the mouse uterus. Life Sci 2006; 79: 1736-40 https://doi.org/10.1016/j.lfs.2006.06.002
  80. Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, et al. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 2005; 435: 104-8 https://doi.org/10.1038/nature03505
  81. Takamoto N, Zhao B, Tsai SY, DeMayo FJ. Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Mol Endocrinol 2002; 16: 2338-48 https://doi.org/10.1210/me.2001-0154
  82. Kurihara I, Lee DK, Petit FG, Jeong J, Lee K, Lydon JP, et al. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet 2007; 3: e102 https://doi.org/10.1371/journal.pgen.0030102
  83. Feroze-Zaidi F, Fusi L, Takano M, Higham J, Salker MS, Goto T, et al. Role and regulation of the serum- and glucocorticoidregulated kinase 1 in fertile and infertile human endometrium. Endocrinology 2007; 148: 5020-9 https://doi.org/10.1210/en.2007-0659
  84. Curry Jr TE, Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev 2003; 24: 428-65 https://doi.org/10.1210/er.2002-0005
  85. Salamonsen LA. Role of proteases in implantation. Rev Reprod 1999; 4: 11-22 https://doi.org/10.1530/ror.0.0040011
  86. Song G, Spencer TE, Bazer FW. Cathepsins in the ovine uterus: regulation by pregnancy, progesterone, and interferon tau. Endocrinology 2005; 146: 4825-33 https://doi.org/10.1210/en.2005-0768
  87. Song G, Spencer TE, Bazer FW. Progesterone and interferontau regulate cystatin C in the endometrium. Endocrinology 2006; 147: 3478-83 https://doi.org/10.1210/en.2006-0122
  88. Cheon YP. Altering of collagens in early pregnant mouse uterus. Dev Reprod 2007; 11: 1-11
  89. Candeloro L, Zorn TM. Distribution and spatiotemporal relationship of activin a and follistatin in mouse decidual and placental tissue. Am J Reprod Immunol 2007; 58: 415 -24 https://doi.org/10.1111/j.1600-0897.2007.00525.x
  90. Hones RL, Findlay JK, Farnworth PG, Robertson DM, Wallace E, Salamonsen LA. Activin A and inhibin A differentially regulate human uterine matrix metalloproteinases: potential interactions during decidualization and trophoblast invasion. Endocrinology 2006; 147: 724-32 https://doi.org/10.1210/en.2005-1183
  91. Jones RL, Salamonsen LA, Findlay JK. Activin A promotes human endometrial stromal cell decidualization in vitro. J Clin Endocrinol Metab 2002; 87: 4001-4 https://doi.org/10.1210/jc.87.8.4001
  92. Florio P, Rossi M, Vigano P, Luisi S, Torricelli M, Torres PB, et al. Interleukin 1beta and progesterone stimulate activin a expression and secretion from cultured human endometrial stromal cells. Reprod Sci 2007; 14: 29-36 https://doi.org/10.1177/1933719106298191
  93. Wimalawansa SJ. Calcitonin: molecular biology, physiology, pathophysiology and its therapeutic uses. In: Pecile AAB, editor. Advances in Bone Regulatory Factors: Morphology, biochemistry, physiology and pharmacology. England: Plenum Press; 1990. p.121-160
  94. Zhu LJ, Bove KC, Polihronis M. Bagchi MK, Bagchi IC. Calcitonin is a progesterone-regulated marker which forecasts the receptive state of endometrium during implantation. Endocrinology 1998; 139: 3923-34 https://doi.org/10.1210/en.139.9.3923
  95. Bagchi IC, Li Q, Cheon YP. Role of steroid hormoneregulated genes in implantation. Ann NY Acad Sci 2001; 943: 68-76 https://doi.org/10.1111/j.1749-6632.2001.tb03792.x
  96. Ding YQ, Bagchi MK, Bardin CW, Bagchi IC. Calcitonin gene expression in the rat uterus during pregnancy. Rec Progr Horm Res 1995; 50: 373-8
  97. Kumar S, Zhu LJ, Polihronis M, Cameron ST, Baird DT, Schatz F, et al. Progesterone induces calcitonin gene expression in human endometrium within the putative window of implantation. J Clin Endocrinol Metab 1998; 83: 4443-50 https://doi.org/10.1210/jc.83.12.4443
  98. Li Q, Wang J, Armant DR, Bagchi MK, Bagchi IC. Calcitonin down-regulates E-cadherin expression in rodent uterine epithelium during implantation. J Biol Chem 2002; 277: 46447-55 https://doi.org/10.1074/jbc.M203555200
  99. Song G, Bazer FW, Wagner GF, Spencer TE. Stanniocalcin (STC) in the endometrial glands of the ovine uterus: regulation by progesterone and placental hormones. Biol Reprod 2006; 74: 913-22 https://doi.org/10.1095/biolreprod.106.050807
  100. Das SK, Chakraborty I, Paria BC, Wang XN, Plowman G, Dey SK. Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol Endocrinol 1995; 9: 691-705 https://doi.org/10.1210/me.9.6.691
  101. Das SK, Tsukamura H, Paria BC, Addrews GK, Dey SK. Differential expression of epidermal growth factor receptor (EGF-R) gene and regulation of EGF-R bioactivity by progesterone and estrogen in the adult mouse uterus. Endocrinology 1994; 134: 971-81 https://doi.org/10.1210/en.134.2.971
  102. Muffly KE, Jin DF, Okulicz WC, Kilpatrick DL. Gonadal steroids regulate proenkephalin gene expression in a tissuespecific manner within the female reproductive system. Mol Endocrinol 1988; 2: 979-85 https://doi.org/10.1210/mend-2-10-979
  103. Rosen H, Itin A, Schiff R, Keshet E. Local regulation within the female reproductive system and upon embryonic implantation: identification of cells expressing proenkephalin A. Mol Endocrinol 1990; 4: 146-54 https://doi.org/10.1210/mend-4-1-146
  104. Gravanis A, Makrigiannakis A, Chatzaki E, Zoumakis E, Tsatsanis C, Margioris AN. Stress neuropeptides in the human endometrium: paracrine effects on cell differentiation and apoptosis. Hormones (Athens) 2002; 1: 139-48 https://doi.org/10.14310/horm.2002.1161
  105. Godbole GB, Modi DN, Puri CP. Regulation of homeobox A10 expression in the primate endometrium by progesterone and embryonic stimuli. Reproduction 2007; 134: 513-23 https://doi.org/10.1530/REP-07-0234
  106. Lim H, Ma L, Ma WG, Maas RL, Dey SK. Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Molecular Endocrinology 1999; 13: 1005-17 https://doi.org/10.1210/me.13.6.1005
  107. Rahman MA, Li M, Li P, Wang H, Dey SK, Das SK. Hoxa-10 deficiency alters region-specific gene expression and perturbs differentiation of natural killer cells during decidualization. Dev Biol 2006; 290: 105-17 https://doi.org/10.1016/j.ydbio.2005.11.016
  108. Hsieh-Li HM, Witte DP, Weinstein M, Branford W, Li H, Small K, et al. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development 1995; 121: 1373-85
  109. Gendron RL, Raradis H, Hsieh-Li HM, Lee DW, Potter SS, Markoff E. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol Reprod 1997; 56: 1097-105 https://doi.org/10.1095/biolreprod56.5.1097
  110. Tranguch S, Smith DF, Dey SK. Progesterone receptor requires a co-chaperone for signalling in uterine biology and implantation. Reprod Biomed Online 2006; 13: 651-60 https://doi.org/10.1016/S1472-6483(10)60655-4
  111. Salamonsen LA, Jeziorska M, Newlands GFJ, Dey SK, Woolley DE. Evidence against a significant role for mast cells in blastocyst implantation in the rat and mouse. Reprod Fertil Dev 1996; 8: 1157-64 https://doi.org/10.1071/RD9961157
  112. Weitlauf HM. Implantation. In: Alexander NJ, editor. Animal models for research on contraception and fertility. New York: Harper and Row Publishers; 1979. p.238-52
  113. Paria BC, Das N, Das SK, Zhao X, Dileepan KN, Dey SK. Histidine decarboxylase gene in the mouse uterus is regulated by progesterone and correlates with uterine differentiation for blastocyst implantation. Endocrinology 1998; 139: 3958-66 https://doi.org/10.1210/en.139.9.3958
  114. Szelag A, Merwid-Lad A, Trocha M. Histamine receptors in the female reproductive system. Part I. Role of the mast cells and histamine in female reproductive system. Ginekol Pol 2002; 73: 627-35
  115. Wood GW, Hausmann EH, Choudhuri R, Dileepan KN. Expression and regulation of histidine decarboxylase mRNA expression in the uterus during pregnancy in the mouse. Cytokine 2000; 12: 622-9 https://doi.org/10.1006/cyto.2000.0667
  116. Weintraub AS, Lin X, Itskovich VV, Aguinaldo JG, Chaplin WF, Denhardt DT, et al. Prenatal detection of embryo resorption in osteopontin-deficient mice using serial noninvasive magnetic resonance microscopy. Pediatric Research 2004; 55: 419-24 https://doi.org/10.1203/01.PDR.0000112034.98387.B2
  117. Apparao KB, Illera MJ, Beyler SA, Olson GE, Osteen KG, Corjay MH, et al. Regulated expression of osteopontin in the peri-implantation rabbit uterus. Biol Reprod 2003; 68: 1484 -90 https://doi.org/10.1095/biolreprod.101.001347
  118. Johnson GA, Spencer TE, Burghardt RC, Taylor KM, Gray CA, Bazer FW. Progesterone modulation of osteopontin gene expression in the ovine uterus. Biology of Reproduction 2000; 62: 1315-21 https://doi.org/10.1095/biolreprod62.5.1315
  119. White FJ, Burghardt RC, Hu J, Joyce MM, Spencer TE, Johnson GA. Secreted phosphoprotein 1 (osteopontin) is expressed by stromal macrophages in cyclic and pregnant endometrium of mice, but is induced by estrogen in luminal epithelium during conceptus attachment for implantation. Reproduction 2006; 132: 919-29 https://doi.org/10.1530/REP-06-0068
  120. Anderson E. The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Research 2002; 4: 197-201 https://doi.org/10.1186/bcr452
  121. Soyal S, Ismail PM, Li J, Mulac-Jericevic B, Conneely OM, Lydon JP. Progesterone's role in mammary gland development and tumorigenesis as disclosed by experimental mouse genetics. Breast Cancer Research 2002; 4: 191-6 https://doi.org/10.1186/bcr451
  122. Lange CA. Challenges to defining a role for progesterone in breast cancer. Steroids 2007; Epub
  123. Seagroves TN, Lydon JP, Hovey RC, Vonderhaar BK, Rosen JM. C/EBPb (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development.Mol Endocrinol 2000; 14: 359-68 https://doi.org/10.1210/me.14.3.359
  124. Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 1980; 60: 1049-106 https://doi.org/10.1152/physrev.1980.60.4.1049
  125. Ismail PM, Li J, DeMayo FJ, O'Malley BW, Lydon JP. A novel LacZ reporter mouse reveals complex regulation of the progesterone receptor promoter during mammary gland development. Molecular Endocrinology 2002; 16: 2475-89 https://doi.org/10.1210/me.2002-0169
  126. Grimm SL, Seagroves TN, Kabotyanski EB, Hovey RC, Vonderhaar BK, Lydon JP, et al. Disruption of steroid and prolactin receptor patterning in the mammary gland correlates with a block in lobuloalveolar development. Molecular Endocrinology 2002; 16: 2675-91 https://doi.org/10.1210/me.2002-0239
  127. Fantl V, Edwards PAW, Steel JH, Vonderhaar BK, Dickson C. Impaired mammary gland development in cyl-12/2 mice during pregnancy and lactation is epithelial cell autonomous. Dev Biol 1999: 212: 1-11 https://doi.org/10.1006/dbio.1999.9329
  128. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 2000; 14: 650-54
  129. Lin VC, Jin R, Tan PH, Aw SE, Woon CT, Bay BH. Progesterone induces cellular differentiation in MDA-MB- 231 breast cancer cells transfected with progesterone receptor complementary DNA. Am J Pathol 2003; 162: 1781-7 https://doi.org/10.1016/S0002-9440(10)64313-1