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A New Family of Semicircular Models:

The Semicircular Laplace Distributions

Byoung Jin Ahn1), Hyoung-Moon Kim2)

Abstract

It is developed that a family of the semicircular Laplace distributions for mod-

eling semicircular data by simple projection method. Mathematically it is simple

to simulate observations from a semicircular Laplace distribution. We extend it to

the l-axial Laplace distribution by a simple transformation for modeling any arc of

arbitrary length. Similarly we develop the l-axial log-Laplace distribution based on

the log-Laplace distribution. A bivariate version of l-axial Laplace distribution is

also developed.
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1. Introduction

Full circular models are prevalent at most textbooks (Fisher, 1993; Jammalamadaka
and SenGupta, 2001; Mardia and Jupp, 2000). However those are not always necessary
since sometimes angular data are given as modulo π. Guardiola (2004) and Jones (1968)
noted this fact.

For example, when an aircraft is lost but its point of departure and its initial headings
are known, a random variable having values on a semicircle well suffice for such a problem.
Similarly, when a sea turtle emerges from the ocean in search of a nesting site on dry
land, a semicircular random variable is sufficient for modeling such directional data.
Third example is concerned with the canting angles of falling raindrops (Ugai et al.,
1977): raindrops are shaped roughly like rugby balls and tend to fall at an angle because
of wind resistance and turbulence. These data are called axial or semicircular data.

Guardiola (2004) obtained the semicircular normal distribution using a simple pro-
jection. Similarly we project a Laplace distribution over a semicircular segment to obtain
the semicircular Laplace(SCL) distribution. Laplace probability density function(pdf) is
in-between two pdfs: a normal pdf and a t pdf. Similarly a semicircular Laplace pdf is
located between two pdfs: a semicircular Normal(SCN) pdf and a semicircular t(SCT)
pdf (Kim, 2008).
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This paper is organized as follows. Section 2 defines the distribution, lists some of
its basic properties and derives the trigonometric moments. Furthermore we consider
the asymptotic behavior of the SCL distribution. We estimate parameters of the SCL
distribution by a maximum likelihood method in Section 3. We concludes in Section 4
with extensions of the SCL distribution: the l-axial Laplace distribution for modeling
any arc of arbitrary length, say 2π/l, l = 1, 2, . . . , and the bivariate version of l-axial
Laplace distribution. Similarly it is developed that the l-axial log-Laplace distribution
based on the (linear) log-Laplace distribution. ‘linear’ is used for distinguishing circular
distribution from usual distribution on the real line.

2. Semicircular Laplace Distribution

2.1. Definition and some basic properties

The SCL distribution is obtained by projecting a Laplace distribution over a semicir-
cular segment. Let X have a Laplace distribution with σ, i.e., the density of X is

1
2σ

e−
|x|
σ , −∞ < x < ∞, σ > 0. (2.1)

For brevity, we shall say that X is Laplace(0, σ). This is also known as the Double Expo-
nential distribution. For a positive real number r, define the angle θ by θ = tan−1 (x/r).
Hence, x = r tan(θ). Obviously, the pdf of θ is given by

1
2ϕ

sec2(θ) exp
(
−| tan(θ)|

ϕ

)
, ϕ =

σ

r
, − π

2
< θ <

π

2
. (2.2)

More generally, we introduce the parameter µ as the location parameter for the SCL
distribution and write the pdf as

1
2ϕ

sec2(θ − µ) exp
(
−| tan(θ − µ)|

ϕ

)
, −π

2
+ µ < θ <

π

2
+ µ, − π < µ < π. (2.3)

Then, we say that θ is an SCL random variable with parameters µ and ϕ; for brevity,
we shall also say that θ is SCL(µ, ϕ). Geometrically r is the distance between the radius
and the support of the Laplace density. The closer the support is to the radius, the larger
ϕ.

Figure 2.1 shows the shape of (2.3) for three values of σ(= 1, 2, 5) with r2 = 10
and µ = 0. It is straightforward to generate samples from an SCL distribution. First,
generate samples from a Laplace distribution and then use the inverse transformation,
θ = µ + tan−1(x/r), r = σ/ϕ. Similarly, the cumulative distribution function(cdf) of an
SCL distribution is F (θ; µ, ϕ) = L(r tan(θ − µ)), where the function L(·) is a cdf of a
Laplace distribution, Laplace(0, σ), i.e.,

L(x) = 0.5
[
1 + sgn(x)

{
1− exp

(
−|x|

σ

)}]
. (2.4)
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Figure 2.1: The probability density functions SCL(0, ϕ), where ϕ = σ/r and r2 = 10
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Figure 2.2: An SCN pdf, an SCT pdf and an SCL pdf

The sign function, sgn(x), is a logical function which extracts the sign of a real number.
So

sgn(x) =





1, if x > 0,

0, if x = 0,

−1, if x < 0.

To compare the tail behavior of an SCN distribution, an SCT distribution and an
SCL distribution, Figure 2.2 shows three pdfs. We use the same transformation, x =
r tan(θ) and the same r2 = 10 to get all three pdfs for comparison purpose. An SCN
distribution is obtained from transforming the standard normal distribution (Guardiola,
2004). Similarly an SCT is derived from transforming t distribution with df = 1 (Kim,
2008). An SCL pdf is the pdf of Figure 2.1 with σ = 1. From the Figure 2.2, we note that
an SCT distribution has more heavier tail than an SCN distribution. Similar relationship
also appears at linear statistics, i.e. a relationship between a normal distribution and a t

distribution. Furthermore an SCL pdf is located between the two pdfs which is also true
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for a Laplace pdf, i.e. a Laplace pdf is located between a Normal pdf and a t pdf.
The following properties of the density (2.3) follow immediately from the definition

of an SCL distribution and the properties of a Laplace distribution. Suppose θ1 ∼
SCL(µ, ϕ) independently of θ2 ∼ SCL(µ, ϕ), then

(a) |r tan(θ1 − µ)| ∼ σ

2
χ2(2) and (b)

|r tan(θ1 − µ)|
|r tan(θ2 − µ)| ∼ F (2, 2), (2.5)

where χ2(ν) denotes a χ2 distribution with ν degree of freedom(df) and F (ν1, ν2) rep-
resents a F distribution with ν1 and ν2 dfs.

We consider the asymptotic behavior of the SCL distribution when ϕ → 0. Suppose
θ follows SCL(µ, ϕ). Let y = (θ − µ)/ϕ and then use the change of variable technique.
For sufficiently small ϕ, we have tan(yϕ) ' yϕ and sec(yϕ) ' 1 by the first order
approximation of the Taylor series expansion. Hence, the distribution of θ becomes
Laplace(µ, ϕ). So, for sufficiently small ϕ, the SCL distribution can be approximated by
a (linear) Laplace distribution.

2.2. Trigonometric moments

Similar to those of any circular density, trigonometric moments of the SCL distri-
bution are defined as follows: φp = Eeipθ = αp + iβp = E cos(pθ) + iE sin(pθ), p =
0, ±1, ±2, · · · . We assumed that the location parameter µ = 0 without loss of general-
ity.

Theorem 2.1 Under the pdf (2.3) with µ = 0, the first four αp = E cos(pθ), p =
1, 2, 3, 4, are given as follows:

α1 =
π

2ϕ

{
H0

(
1
ϕ

)
− Y0

(
1
ϕ

)}
,

α2 =
√

π√
2ϕ

3
2

{
H− 1

2

(
1
ϕ

)
− Y− 1

2

(
1
ϕ

)}
− 1,

α3 =
π

2ϕ2

{
Y−1

(
1
ϕ

)
−H−1

(
1
ϕ

)}
− 3

πϕ
G31

13

(
1

4ϕ2

−1/2
0, 0, 1/2

)
,

α4 = 8
{

1− 1
2
√

πϕ
G31

13

(
1

4ϕ2

−1/2
1/2, 0, 1/2

)}
, (2.6)

where Hν(z) is the Struve function, Yν(z) is the Bessel function of the second kind

(Abramowitz and Stegun, 1972) and Gmn
pq

(
x

a1, . . . , ap

b1, . . . , bq

)
is called as Meijer’s G-function

(Gradshteyn and Ryzhik, 2007). Furthermore, βp = E sin(pθ), p = 0, ±1, ±2, . . ., are 0.

Proof : The proof is the process of using some transformations. For the first cosine
moment, use the transformation x = tan(θ) and then use the property of an even function.
So

α1 =
1
ϕ

∫ ∞

0

(1 + x2)−
1
2 e−

x
ϕ dx. (2.7)
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The result α1 follows by the integral formula 3.387.7 (Gradshteyn and Ryzhik, 2007). To
obtain α2, we use the transformation x = tan(θ) followed by using the properties of an
even function and a pdf. So

α2 =
2
ϕ

∫ ∞

0

(1 + x2)−1e−
x
ϕ dx− 1. (2.8)

The result is immediate by the same integral formula of α1. For the third cosine moment,
use the transformation x = tan(θ) and then use the property of an even function.

α3 =
1
ϕ

∫ ∞

0

(1 + x2)−
3
2 e−

x
ϕ dx− 3

ϕ

∫ ∞

0

x2(1 + x2)−
3
2 e−

x
ϕ dx. (2.9)

For the first integral of the right hand side, we can use the same integral formula of α1.
Furthermore, by the integral formula 3.389.2 (Gradshteyn and Ryzhik, 2007), we can
solve the second integral of the right hand side. To get the fourth cosine moment, first
use the transformation x = tan(θ) followed by the property of an even function, then

α4 = 8
{

1− 1
ϕ

∫ ∞

0

x2(1 + x2)−2e−
x
ϕ dx

}
. (2.10)

The result follows using by the integral formula 3.389.2 (Gradshteyn and Ryzhik, 2007)
again. Note that like any other symmetric circular density, βp = E sin(pθ), are 0 as the
density is symmetric about 0. ¤

The Struve function has a power series expansion

Hν(z) =
(z

2

)ν+1

Σ∞k=0

(−1)k
(z

2

)2k

Γ
(

k +
3
2

)
Γ

(
k + ν +

3
2

) . (2.11)

The Bessel functions of the second kind are solutions of the Bessel differential equa-
tion. They are singular(infinite) at the origin(z = 0). Yν(z) is also called the Neumann

function. The Meijer’s G-function, Gmn
pq

(
x

a1, . . . , ap

b1, . . . , bq

)
, satisfies the following linear

qth-order differential equation:
[
(−1)p−m−nxΠp

j=1

(
x

d

dx
− aj + 1

)
Πq

j=1

(
x

d

dx
− bj

)]
y = 0, [p ≤ q]. (2.12)

3. Parameter Estimation

The minus log-likelihood for a random sample of size n, θ = (θ1, . . . , θn), from the
SCL distribution (2.3) is given by

−l(µ, ϕ; θ) = n log(2ϕ) + Σn
i=1 log

(
cos2(θi − µ)

)
+ Σn

i=1

| tan(θi − µ)|
ϕ

. (3.1)

To find maximum likelihood estimates, we can use any minimization subroutine for direct
minimization of the minus log-likelihood itself.
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4. Extensions

We extend the suggested model to the l-axial distribution, which is applicable to any
arc of arbitrary length say 2π/l for l = 1, 2, · · · . Occasionally, measurements result in
any arc of arbitrary length, say 2π/l, l = 1, 2, . . ., so it is desirable to extend the SCL
distribution. To construct the l-axial Laplace distribution, we consider the pdf (2.2) and
use the transformation θ∗ = 2θ/l, l = 1, 2, · · · . The pdf of θ∗ is given by

l

4ϕ
sec2

(
lθ∗

2

)
exp


−

∣∣∣∣tan
(

lθ∗

2

)∣∣∣∣
ϕ


 , ϕ =

σ

r
, − π

l
< θ∗ <

π

l
. (4.1)

Note that when l = 2, the pdf (4.1) is the same as the pdf (2.2), the SCL pdf. When
l = 1, it becomes the pdf of a circular Laplace distribution.

If X has a Laplace(0, σ), then Y = eX has a log-Laplace distribution with the same
parameters. So, using y = r tan(θ), we get a pdf,

1
σ sin(2θ)

exp
(
−| log(r tan(θ))|

σ

)
, 0 < θ <

π

2
. (4.2)

Suppose θ∗ = 4θ/l, l = 1, 2, . . ., then θ∗ has a pdf,

l

4σ sin
(

lθ∗

2

) exp


−

∣∣∣∣log
(

r tan
(

lθ∗

4

))∣∣∣∣
σ


 , 0 < θ∗ <

2π

l
. (4.3)

We say that θ∗ follows the l-axial log-Laplace distribution. When l = 1, we name it
as a circular log-Laplace distribution and l = 2, we call it as a semicircular log-Laplace
distribution. (4.2) is the derived distribution when l = 4 and has a support 0 < θ < π/2.

We can construct a bivariate SCL distribution in a manner similar to the construction
of a univariate SCL distribution. We shall use the same semicircular transformation
applied in a bivariate context. The density function of the bivariate SCL distribution is
defined as

sec2(θ1) sec2(θ2)

πϕ2
√

1− ρ2
K0

(√
2q∗

ϕ

)
, ϕ =

σ

r
, − π

2
< θi <

π

2
, i = 1, 2, (4.4)

where q∗ =
√
{tan2(θ1)− 2ρ tan(θ1) tan(θ2) + tan2(θ2)}/(1− ρ2) and Kλ(·) is a modi-

fied Bessel function of the second kind (Abramowitz and Stegun, 1972).
To construct this density, we begin with the bivariate Laplace density (Johnson and

Kotz, 1972)

f(x1, x2) =
1

πσ2
√

1− ρ2
K0

(√
2q

σ

)
, −∞ < xi < ∞, i = 1, 2, (4.5)
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where σ > 0 and q =
√

(x2
1 − 2ρx1x2 + x2

2)/(1− ρ2). Consider the transformation xi =
r tan(θi), i = 1, 2. The Jacobian is J = r2 sec2(θ1) sec2(θ2). Consequently, the pdf of a
bivariate SCL distribution is obtained using simple algebra. Note that (4.5) has a slightly
different marginal pdf form from (2.1) as follows:

f(x1) =
1√
2σ

exp

(
−
√

2|x1|
σ

)
, −∞ < x1 < ∞, σ > 0. (4.6)

Similar to the method of constructing(univariate) l-axial Laplace distribution, it is
simple to construct bivariate l-axial Laplace distribution. Let θ∗i = 2θi/l, i = 1, 2 and l =
1, 2, . . ., then the joint pdf of θ∗ = (θ∗1 , θ∗2)t is given by

l2 sec2

(
lθ∗1
2

)
sec2

(
lθ∗2
2

)

4πϕ2
√

1− ρ2
K0

(√
2q∗∗

ϕ

)
, −π

l
< θi <

π

l
, i=1, 2 and l = 1, 2, . . . ,(4.7)

where q∗∗ =
√
{tan2(lθ∗1/2)− 2ρ tan(lθ∗1/2) tan(lθ∗2/2) + tan2(lθ∗2/2)}/(1− ρ2). When

l = 1, we call it as bivariate circular Laplace distribution. If l = 2, (4.7) give the same
pdf as (4.4), the bivariate SCL distribution.
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