DOI QR코드

DOI QR Code

Estimation for the Triangular Distribution under Progressive Type-II Censoring

  • Kang, Suk-Bok (Department of Statistics, Yeungnam University) ;
  • Han, Jun-Tae (Institute for National Health Insurance, National Health Insurance Corporation) ;
  • Jung, Won-Tae (Department of Statistics, Yeungnam University)
  • Published : 2008.09.30

Abstract

In this paper, we derive the approximate maximum likelihood estimators(AMLEs) and maximum likelihood estimator of the scale parameter in a triangular distribution based on progressive Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation for various progressive censoring schemes.

Keywords

References

  1. Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring, IEEE Transactions on Reliability, 38, 355-357 https://doi.org/10.1109/24.44181
  2. Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods and Applications, Birkhaser, Boston
  3. Balakrishnan, N. and Asgharzadeh, A. (2005). Inference for the scaled half-logistic distribution based on progressively Type-II censored samples, Communications in Statistics - Theory & Methods, 34, 73-87 https://doi.org/10.1081/STA-200045814
  4. Balakrishnan, N. and Nevzovor, V. B. (2003). A Primer on Statistical Distributions, John Wiley & Sons, New York
  5. Balakrishnan, N. and Wong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half-logistic distribution with Type-II right-censoring, IEEE Transactions on Reliability, 40, 140-145 https://doi.org/10.1109/24.87114
  6. Balakrishnan, N., Kannan, N., Lin, C. T. and Ng, H. K. T. (2003). Point and interval estimation for Gaussian distribution based on progressively Type-II censored samples, IEEE Transactions on Reliability, 52, 90-95 https://doi.org/10.1109/TR.2002.805786
  7. Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressive Type-II censoring, Journal of Statistical Computation & Simulation, 74, 25-45 https://doi.org/10.1080/0094965031000105881
  8. Balasooriya, U., Saw, S. L. C. and Gadag, V. (2000). Progressive censored reliability sampling plans for the Weibull distribution, Technometrics, 42, 160-167 https://doi.org/10.2307/1271448
  9. Han, J. T. and Kang, S. B. (2008). Estimation for the double Rayleigh distribution based on multiply Type-II censored samples, Communications of the Korean Statistical Society, 15, 367-378 https://doi.org/10.5351/CKSS.2008.15.3.367
  10. Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis, The Statistician, 46, 387-398
  11. Kang, S. B. (1996). Approximate MLE for the scale parameter of the double exponential distribution based on Type-II censored samples, Journal of the Korean Mathematical Society, 33, 69-79
  12. Keefer, D. L. and Verdini, W. A. (1993). Better estimation of PERT activity time parameters, Management Science, 39, 1086-1091 https://doi.org/10.1287/mnsc.39.9.1086
  13. Kim, C. S. (2006). On estimating Burr Type-XII parameter based on general Type-II progressive censoring, The Korean Communications in Statistics, 13, 89-99 https://doi.org/10.5351/CKSS.2006.13.1.089
  14. Lin, C. T., Wu, S. J. S. and Balakrishnan, N. (2006). Inference for log-gamma distribution based on progressively censored data, Communications in Statistics-Theory and Methods, 35, 1271-1292 https://doi.org/10.1080/03610920600692789
  15. Lee, H. J., Han, J. T. and Kang, S. B. (2008). Estimation for a triangular distribution based on multiply Type-II censored samples, Journal of the Korean Data & Information Science Society, 19, 319-330
  16. Moder, J. J. and Rodgers, E. G. (1968). Judgment estimates of the moments of PERT type distributions, Management Science, 15, 76-83 https://doi.org/10.1287/mnsc.15.2.B76
  17. Ng, H. K. T., Chan, P. S. and Balakrishnan, N. (2002). Estimation of parameters from progressively censored data using EM algorithm, Computational Statistics & Data Analysis, 39, 371-386 https://doi.org/10.1016/S0167-9473(01)00091-3
  18. Seo, E. H. and Kang, S. B. (2007). AMLEs for Rayleigh distribution based on progressive Type-II censored data, The Korean Communications in Statistics, 14, 329-344 https://doi.org/10.5351/CKSS.2007.14.2.329
  19. Viveros, R. and Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data, Technometrics, 36, 84-91 https://doi.org/10.2307/1269201
  20. von Drop, J. R. and Kotz, S. (2002). A novel extension of the triangular distribution and its parameter estimation, The Statistician, 51, 63-79