References
- Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring, IEEE Transactions on Reliability, 38, 355-357 https://doi.org/10.1109/24.44181
- Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods and Applications, Birkhaser, Boston
- Balakrishnan, N. and Asgharzadeh, A. (2005). Inference for the scaled half-logistic distribution based on progressively Type-II censored samples, Communications in Statistics - Theory & Methods, 34, 73-87 https://doi.org/10.1081/STA-200045814
- Balakrishnan, N. and Nevzovor, V. B. (2003). A Primer on Statistical Distributions, John Wiley & Sons, New York
- Balakrishnan, N. and Wong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half-logistic distribution with Type-II right-censoring, IEEE Transactions on Reliability, 40, 140-145 https://doi.org/10.1109/24.87114
- Balakrishnan, N., Kannan, N., Lin, C. T. and Ng, H. K. T. (2003). Point and interval estimation for Gaussian distribution based on progressively Type-II censored samples, IEEE Transactions on Reliability, 52, 90-95 https://doi.org/10.1109/TR.2002.805786
- Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressive Type-II censoring, Journal of Statistical Computation & Simulation, 74, 25-45 https://doi.org/10.1080/0094965031000105881
- Balasooriya, U., Saw, S. L. C. and Gadag, V. (2000). Progressive censored reliability sampling plans for the Weibull distribution, Technometrics, 42, 160-167 https://doi.org/10.2307/1271448
- Han, J. T. and Kang, S. B. (2008). Estimation for the double Rayleigh distribution based on multiply Type-II censored samples, Communications of the Korean Statistical Society, 15, 367-378 https://doi.org/10.5351/CKSS.2008.15.3.367
- Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis, The Statistician, 46, 387-398
- Kang, S. B. (1996). Approximate MLE for the scale parameter of the double exponential distribution based on Type-II censored samples, Journal of the Korean Mathematical Society, 33, 69-79
- Keefer, D. L. and Verdini, W. A. (1993). Better estimation of PERT activity time parameters, Management Science, 39, 1086-1091 https://doi.org/10.1287/mnsc.39.9.1086
- Kim, C. S. (2006). On estimating Burr Type-XII parameter based on general Type-II progressive censoring, The Korean Communications in Statistics, 13, 89-99 https://doi.org/10.5351/CKSS.2006.13.1.089
- Lin, C. T., Wu, S. J. S. and Balakrishnan, N. (2006). Inference for log-gamma distribution based on progressively censored data, Communications in Statistics-Theory and Methods, 35, 1271-1292 https://doi.org/10.1080/03610920600692789
- Lee, H. J., Han, J. T. and Kang, S. B. (2008). Estimation for a triangular distribution based on multiply Type-II censored samples, Journal of the Korean Data & Information Science Society, 19, 319-330
- Moder, J. J. and Rodgers, E. G. (1968). Judgment estimates of the moments of PERT type distributions, Management Science, 15, 76-83 https://doi.org/10.1287/mnsc.15.2.B76
- Ng, H. K. T., Chan, P. S. and Balakrishnan, N. (2002). Estimation of parameters from progressively censored data using EM algorithm, Computational Statistics & Data Analysis, 39, 371-386 https://doi.org/10.1016/S0167-9473(01)00091-3
- Seo, E. H. and Kang, S. B. (2007). AMLEs for Rayleigh distribution based on progressive Type-II censored data, The Korean Communications in Statistics, 14, 329-344 https://doi.org/10.5351/CKSS.2007.14.2.329
- Viveros, R. and Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data, Technometrics, 36, 84-91 https://doi.org/10.2307/1269201
- von Drop, J. R. and Kotz, S. (2002). A novel extension of the triangular distribution and its parameter estimation, The Statistician, 51, 63-79