
Communications of the Korean Statistical Society Vol. 15, No. 5, 2008, pp. 727–735

Testing Relationship between Treatment and Survival
Time with an Intermediate Event†

Sungim Lee1)

Abstract
Consider a clinical trial in which the main end-point is survival. Suppose after

the start of the study an intermediate event occurs which may be influenced by a
covariate(or treatment). In many clinical studies the occurrence of an intermediate
event may change the survival distribution. This investigation develops two-stage
model which, in the first stage, models the effect of covariate on the intermediate
event and models the relationship between survival time and covariate as well as
the intermediate event. In this paper, the two-stage model is presented in order
to model intermediate event and a test based on this model is also provided. A
numerical simulations are carried out to evaluate its overall significance level.
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1. Introduction

An intermediate event is common and has recently got much attention in a controlled
clinical study with survival as an end-point. For survival data in clinical studies refer to
Lee (1994, 1998) and Lee and Sather (1995). As noticed by many researchers such as
Lagakos (1976), Finkelstein and Scheonfeld (1994), Fleming et al. (1994), Lefkopoulou
and Zelen (1995) and Nan et al. (2005) the intermediate event which is expected to confer
survival advantage may have more important effect on survival than the treatment in
many clinical situations. For example, consider the problem if chemotheraphies given to
patients having cancer, have an effect on the survival. In most cases, this is also evaluated
by the reduction of tumor size which may appear as the response of the treatment.
Anderson et al. (1983) studied its relationship with survival. Another example is the
analysis of Stanford heart transplant data set by Crowley and Hu (1977). They consider
the time-dependent Cox regression model

λ(t |x, Y (t)) = λ0(t) exp
{
β1x + β2Y (t)

}
, (1.1)

where t is the survival time, λ0(t) is the unspecified baseline hazard function, x is a
baseline covariate and Y (t) is a time-dependent indicator for the occurrence of a given
intermediate event defined by

Y (t) =

{
0, t < tY ,

1, t ≥ tY .
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Here, tY is the time to the event of heart transplant. They treat an intermediate event
as another covariate and test its effect on the survival time. As in Crowley and Hu
(1977), most of studies on intermediate event are on testing its effect to survival time by
treating it as an additional covariate. And less attention is given to testing treatment
effect, which surely the main goal of the entire clinical study. The same is true for series
of recent work by Nam and Zelen (2001) and Lefkopoulou and Zelen (1995).

Testing treatment effect on the survival time requires much care when intermediate
event exists. It is mainly because the treatment effect could affect to survival time
indirectly via the intermediate event. Hence, in this paper, we propose two-stage model
which, in the first stage, models the effect of covariate(or treatment) on the intermediate
event and models the relationship between survival time to covariates as well as the
intermediate event. As a first stage model, we simply consider the regression model, or
the logistic regression model if the intermediate event is binary. For the second stage,
we employ the proportional hazards model used in Crowley and Hu (1977).

We expect this two-stage model will provide a power gain in testing treatment effect.
However, due to the hierarchical structure of the model, the null hypothesis we test
becomes a union of simple subspaces. Further, as will be shown in later, dimension
of each subspace is not same. Due to these reasons, the most beloved likelihood ratio
test(LRT) has difficulty in computation and its null distribution is not understood well.
In this paper, we propose an alternative test procedure which has two-stage.

The two-stage procedure(TSP) we propose combines two LRTs of each stage of the
proposed two-stage model: two LRTs are obtained from the story of logistic regression
model and the proportional hazards model. A main difficulty of TST arises from con-
trolling overall significance level. To resolve this difficulty, we utilize the fact that “two
LRT statistics are independent to each other”.

This paper is organized as follows. In Section 2, the two-stage model is presented
in order to model intermediate event and TSP is also presented. Section 3 provides the
numerical simulations. The paper concludes with a discussion.

2. A Two-Stage Model and Its Procedure

2.1. A two-stage model

To assess the treatment effect on the survival time controlling for intermediate event,
Nam and Zelen (2001) assume that the survival distribution for treatment belongs to a
family of Lehmann’s alternatives for each response level which naturally corresponds to
the model in (1.1). This model treats the intermediate event as one of covariates in the
model. Here, this model can be rewritten and extended to the model with interaction
effect between covariate and intermediate event:

λ(t |x, y) = λ0(t) exp(β1x + β2y + β3xy), (2.1)

where y = 1 if an immediate intermediate event occurs and otherwise, y = 0. Note that
the time-dependent covariate Y (t) in (1.1) is replaced with binary variable y since we
restrict our interest on “ immediate intermediate event”. As mentioned in Introduction,
intermediate event can occur as a response to treatment. Hence, for testing treatment
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Figure 2.1: Effect path diagram: Survival model with treatment and intermediate event

effect the model will be extended as

f(t, y |x) = f(t | y, x)f(y |x), (2.2)

where f(t | y, x) is modeled as in (2.1) and f(y |x) can be assumed to have the probability
function given x as

f(y |x) =
exp

{
(α + β0x)y

}

1 + exp
(
α + β0x

) . (2.3)

This model may involve more interesting settings concerning the relationship between
the treatment, intermediate event and survival. For example, consider the situation the
survival is independent of treatment conditional on the occurrence of intermediate event.
That is, f(t |x, y = 1) = f(t | y = 1) and f(t |x, y = 0) = f(t | y = 0) implies that the
comparing treatment is done by comparing the equality of f(y |x = 0) and f(y |x = 1)
which represents the possibility of indirect treatment effect. To test the overall effect of
the treatment on the survival time, we think of a direct effect following a path X → T
and an indirect effect X → Y → T displayed in Figure 2.1. To do this in the model
(2.2) applying (2.1) and (2.3), the null hypothesis can be displayed as a circle in Figure
2.2. The null hypothesis depicted as a circle(β1 = β3 = 0) means no treatment effect
if we only consider the model (2.1). However, this is not enough to take effect into
account since a covariate could affect to the survival time indirectly via the relationship
with intermediate event. Thus, the null hypothesis we are interested in should be the
shaded region of the circle in Figure 2.2. One is the null situation of H0A : β1 = β3 =
β0 = β2 = 0 which implies no treatment effect on survival times conditional on the
response which has no effect on the survival and this response are not affected by the
treatment. The other situation is that H0B : β1 = β3 = β0 = 0, β2 6= 0 which check
if the treatment affects the survival time directly and indirectly via the occurrence of
intermediate event which affect the survival time. The third situation is that H0C : β1 =
β3 = β2 = 0, β0 6= 0 which means that β1 = β3 = 0 still works but the treatment
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Figure 2.2: This is null parameter space which is representative of situation where there
is no treatment effect on survival time

affects the occurrence of intermediate event which also affects the survival time. As a
result, the interesting parameter space for testing treatment effect can be described as
{H0A∪H0B∪H0C} (colored part in Figure 2.2). Here, the null hypothesis we test becomes
a noncompact composite set which makes usual LRT difficult by means of commercial
software. Moreover, the model in (2.1) cannot explain the indirect relationship resulting
from the relationship between treatment and an intermediate event and it leads to the
lose of power. Hence, we need to propose an alternative test procedures for this null
parameter space: one is for testing the effect of treatment on the intermediate event and
the other is for testing the effect of treatment and intermediate event on the survival
time depending on the result of first procedure. In this paper we investigate these two
procedures as a two-stage test procedure.

2.2. A two-stage procedure

In this section, we propose a two-stage procedure to test the treatment effect. The
null hypotheses is broken down into two sequence of hypotheses and tested sequentially
according to result of the first step: (i) the conditional distribution of Y given X is that
in (2.3) and (ii) the conditional distribution of T given Y and X is that in (2.1). Firstly,
we consider testing effect of covariate X on an intermediate event Y , i.e., H0A : β0 = 0.
According to the result of the first step, we will take different hypothesis. If the null
hypothesis is accepted, the next step has sequential hypothesis of H0B : β1 = β3 = 0.
Otherwise, the sequential hypothesis will be H0C : β1 = β2 = β3 = 0. This step is
depicted in Figure 2.3. We call this two-stage procedure in this paper. Now we introduce
notations and test statistics to be used in the two-stage procedure. Let H0A, H0B and
H0C be the set of parameter values for hypothesis, H0A, H0B and H0C respectively.
We let H0 = H0A ∪ H0B ∪ H0C and let H be the set of all possible parameter values(
θ, β), where θ = (α, β0) and β = (β1, β2, β3) in (2.1) and (2.3). Let Ti and Ci be

the survival time and the right-censoring time of the ith subject for i = 1, 2, . . . , n and
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Figure 2.3: Two-stage procedure for testing the relationship between treatment and
survival time

Ui = (Ti ∧ Ci) and δ = I(Ti ∧ Ci). Let zi = (xi, yi, xiyi)′, Ni(t) = I(Ui ≤ t, δ = 1) and
Ri(t) = I(Ti ≥ t). Then, the log-likelihood function becomes

l
(
α, β0, β1, β2, β3

)
= l

(
θ, β

)
= l1

(
θ
)

+ l2
(
β
)
, (2.4)

where

l1
(
θ
)

=
n∑

i=1

{
yi(α + β0xi)− log

(
1 + eα+β0xi

) }
,

l2
(
β
)

=
n∑

i=1

[ ∫ τ

0

z′iβdNi(s)−
∫ τ

0

log
{

S(0)(β, s)
}

dNi(s)
]

and

S(0)
(
β, t

)
= n−1

n∑

j=1

Rj(t) exp
(
z′jβ

)
.

Based on the log likelihood in (2.4), we may choose the well-known LRT statistics for
each hypothesis H0A, H0B and H0C . Hence, for each hypothesis, we let the LRT as V1,
V2 and V3 as

V1 = 2
(
l1

(
α̂, β̂0

)
− l1 (α̂, 0)

)
∼ χ2(1), (2.5)

V2 = 2
(
l
(
α, β̂0, β̂1, β̂2, β̂3

)
− l

(
α, β̂0, 0, β̂2, 0

))
(2.6)

= 2
(
l2

(
β̂1, β̂2, β̂3

)
− l2

(
0, β̂2, 0

))
∼ χ2(2),

V3 = 2
(
l
(
α, β̂0, β̂1, β̂2, β̂3

)
− l

(
α, β̂0, 0, 0, 0

))
(2.7)

= 2
(
l2

(
β̂1, β̂2, β̂3

)
− l2 (0, 0, 0)

)
∼ χ2(3).
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Figure 2.4: The shaded region is the feasible set A(α) = {(k1, k2) : k2 ≤ α−k1/(1− k1)}
with γ1 = 1 for the size α test

As shown in Figure 2.3, the final rejection region R1 = {V1 > c1,V3 > c3} or R2 =
{V1 < c1,V2 > c2} is determined by the result of first stage. To do this, it however
requires to control the overall significance level throughout the two-stage procedures.

Concerning the significance level in each stage, we apply the level k1 in the first stage
procedure and the level k2 in the second stage procedure and to evaluate the significance
level we generate the data from each null, H0A, H0B and H0C . Under the data generated
by the null H0A, the significance level is calculated by

P
(R1

)
= P

({V1 > c1,V3 > c3}
)

= (1− k1)k2,

P
(R2

)
= P

({V1 < c1,V2 > c2}
)

= k1k2,

P
(R1 ∪R2

)
= P

(R1

)
+ P

(R2

)
= k2. (2.8)

Note that the test statistic V1 is independent of V2 and V3. We get k2 level if the data is
generated from H0A. Secondly, consider the data under the null H0B . In this situation,
the probability of rejection region V3 > c3 will be different from that in H0A. Since the
parameter space includes β2 6= 0, the probability of that region has the power γ1. Hence,
the significance level is given by

P
(R1

)
= P

({V1 > c1,V3 > c3}
)

= (1− k1)k2,

P
(R2

)
= P

({V1 < c1,V2 > c2}
)

= k1γ1,

P
(R1 ∪R2

)
= P

(R1

)
+ P

(R2

)
= (1− k1)k2 + k1γ1. (2.9)

Lastly, consider the data under the null H0C . As similarly in H0B , the probability of
rejection region V1 > c1 will be the power γ2 under β0 6= 0. Therefore, the significance
level is calculated by

P
(R1

)
= P

({V1 > c1,V3 > c3}
)

= (1− γ2)k2,

P
(R2

)
= P

({V1 < c1,V2 > c2}
)

= γ2k2,

P
(R1 ∪R2

)
= P

(R1

)
+ P

(R2

)
= k2. (2.10)
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Table 3.1: This numerical results show the overall significance levels across the data
generation and powers at level 5% with k1 = k2 = 0.025

Sample size(n) H0A level H0B level H0C level Power
50 0.027 0.050 0.038 0.177
100 0.031 0.064 0.034 0.536
150 0.022 0.061 0.029 0.748
200 0.023 0.052 0.041 0.861

Table 3.2: This numerical results show the overall significance levels across the data
generation and powers at level 5% with k1 = 0 and k2 = 0.05

Sample size(n) H0A level H0B level H0C level Power
50 0.062 0.060 0.070 0.078
100 0.063 0.053 0.052 0.069
150 0.055 0.069 0.051 0.056
200 0.046 0.047 0.063 0.060

From (2.8)– (2.10), we realize we have two kinds of significance levels according to the
null. Hence, for a size α test, we can choose arbitrary significance level (k1, k2) satisfying

max
(
k2, (1− k1)k2 + k1γ1) ≤ α. (2.11)

In the above, the power γ1 will be between α and one. If we let this equal to one so that
its significance level set to maximum, then the feasible set of (k1, k2) satisfying a size α
test is shown as in Figure 2.4.

3. Numerical Simulation Studies

In this section, we numerically investigate the overall significance level and power of
the proposed test at fixed level. We first introduce the set up of the simulation. We
generated n survival times T which are exponentially distributed with λ0(t) = 1 in (2.1).
Censoring times are generated to yield about 30% of censored observations. Empirical
significance levels and powers of the two-stage procedures were evaluated based on 1000
simulations with the data from the null H0A, H0B and H0C respectively at the specific
level k1 and k2. For the generation of data from the null H0A, we set β0 = 0, β2 = 0.
We also set β0 = 0, β2 = 1 for generation from the null H0B and β0 = 1, β2 = 0 for the
null H0C . We get β0 = 1, β2 = 1 for evaluation of power gain. In all simulation setting,
we define β1 and β3 equal to zero.

Case 1: If we use the same level k1 = k2 for the two-stage procedures, then the level will
be k1 = k2 =

√
1− α as in Figure 2.4. Table 3.1 is obtained from level α = 0.025

and k1 = k2 = 0.025.

Case 2: If we consider the level only for the second stage, then this implies k1 = 0, k2 =
α. This implies that we only use the model (2.1). We set α = 0.05 in Table 3.2.



734 Sungim Lee

Table 3.1 reports that, in most cases, the size of the test is approximately less than
0.05, the aimed significance level and there exists power gain at the indirect effect of the
treatment. However, if we consider only the proportional hazards model as in (2.1), the
result in Table 3.2 shows that we couldn’t expect the power gain due to indirect effect
although we control the overall significance level at the level 0.05.

4. Conclusion and Further Discussions

In this paper, we investigated that a covariate(say, treatment) could influence survival
time indirectly via intermediate event. However, previous studies more focused on testing
the intermediate event effect and do not consider the model between intermediate event
and covariate which ignores the possible relationship between covariate and survival time
via intermediate event. Therefore we developed the two stage model which include the
model of intermediate event given a covaraite.

This paper dealt with the structures in which the waiting time for response happens
relatively soon after treatment begins, provided a response is to take place. However,
there are situations in which the waiting time is relative long relative to the mean survival.
In this case, the longer a person is alive, the greater the change of observing a response.
Although valid methods are well dealt with, the relationship between the treatment and
the response has not been explored yet as we did with an immediate intermediate event.
Therefore, the intermediate event having long waiting time will be explored in further
studies.
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