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A PCR-enzyme-linked immunosorbent assay (PCR-ELISA)
was developed for the rapid and sensitive detection of L.
monocytogenes. PCR primers generating a 132-bp amplicon
and a capture probe able to hybridize to the PCR amplicon
were designed based on the L. monocytogenes-specific hly
gene encoding listeriolysin. The detection limit of PCR-ELISA
for L. monocytogenes was determined to be as low as 10 cells
per PCR reaction, and this level of detection was achieved
within 5 h. These results indicate that the PCR-ELISA
provides a valuable tool for the rapid and sensitive detection
of L. monocytogenes for the ready-to-eat food industry.
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Listeria monocytogenes is a significant foodborne pathogen
that is widely distributed in both natural and human-made
environments [9, 11]. In immunocompromised individuals
and pregnant women, it is capable of causing listeriosis, a
serious disease that may result in severe complications such
as meningitis, septicemia, and spontaneous abortion [20].
Compared with other common foodborne infections, listeriosis
has a relatively high mortality rate (20-30%) [5, 13, 24].
Most cases of listeriosis are caused by the ingestion of L.
monocytogenes-contaminated ready-to-eat foods that do
not require heating before consumption [9, 11], such as raw
and smoked fish, bean curd (fofu), raw and fermented vegetables
(e.g., salads and kimchi), cheese, milk, raw-meat sausage, and
ice cream. Because L. monocytogenes is ubiquitous and capable
of growth at refrigeration temperature (4°C) [8, 9, 11], it may
contaminate foods at any point of production, distribution,
or storage. The prevalence of L. monocytogenes contamination
in a variety of ready-to-eat foods and food processing
environments has been reported from 6—36% up to 78% of
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tested samples [1-3, 16, 21, 28, 30, 32]. Since food safety
regulations have tended to adopt a zero tolerance attitude
for the presence of L. monocytogenes in ready-to-eat foods
[10], it is important to have a rapid test with high sensitivity
for detecting L. monocytogenes.

In this study, a PCR-enzyme-linked immunosorbent assay
(PCR-ELISA) for the rapid and sensitive detection of L.
monocytogenes was developed. PCR-ELISA involves
incorporation of chemically tagged nucleotides into the PCR
amplicon that may be detected later with an enzyme-conjugated
antibody [23]. PCR-ELISA has been used for the detection
of pathogenic bacteria from food, clinical, and environmental
samples [4, 6, 7, 12, 14, 15, 26, 27, 31, 35], but few studies
evaluated the utility of PCR-ELISA for detecting
L. monocytogenes. For PCR-ELISA detection of L.
monocytogenes, L. monocytogenes-specific PCR primers
and a capture probe were designed, validated, and implemented
based on the Aly virulence gene encoding listeriolysin [25].
Here, the specificity, sensitivity, and convenience of the
developed method are described.

Bacterial Strains and DNA Extraction

Eleven strains of Listeria (9 strains of L. monocytogenes
[ATCC 19111-19118 and ATCC 15313], L. ivanovii ATCC
19119, and L. innocua ATCC 33090) from the American Type
Culture Collection (ATCC) were used to evaluate primer
specificity in initial PCR optimization experiments. All Listeria
strains were cultured in brain heart infusion (BHI) broth
(Difco, Detroit, MI, U.S.A.) at 37°C. Non-Listeria strains
(Pseudomonas, Escherichia, Vibrio, Acidobacteria, and
Bacillus) were obtained from laboratory stocks and cultured
in nutrient broth (Difco). Genomic DNAs from the bacterial
strains were extracted according to the standard procedures
described by Sambrook and Russell [33]. DNA concentrations
were determined by using a DNA Quantification kit (Sigma,
St. Louis, MO, U.S.A.) and fluorometer according to the
manufacturer’s protocols.



Oligonucleotide Primers and Capture Probe

PCR primers and a capture probe were designed based on
the L. monocytogenes-specific hly gene encoding listeriolysin
[25]. The Aly sequences (Accession Nos. AF253320, M24199,
U25446, U25452, and U25449) were obtained from the NCBI
(National Center for Biotechnology Information) GenBank
database and aligned with the CLUSTAL W software [34].
A consensus sequence from the aligned 4/y sequences was
subjected to primer and probe searches with the ArrayDesigner
software (PREMIER Biosoft, Palo Alto, CA, U.S.A.). After
checking the specificity of primer and probe sequences in
silico using the NCBI BLAST (Basic Local Alignment Search
Tool), searches against sequences available in the GenBank
database, PCR primers [L-JH-f (5-TCCGCCTGCAAGTICC-
TAAG-3') and L-JH (5-GGCGGCACATTTGICACTG-3")]
generating a 132-bp amplicon and a capture probe [L-JH-c
(5-CAAGTCCTAAGACGCCAATCG-3")] able to hybridize
to the PCR amplicon were designed. The capture probe was
synthesized with an incorporated 5' biotin.

PCR-ELISA Detection of L. monocytogenes
The L. monocytogenes-specific hly gene was amplified
using primers L-JH-f and L-JH-r. The reaction mixture
included 25 pl of Tag PreMix with MgCl, (TaKaRa, Shiga,
Japan), 1 pl of each of the forward and reverse primers (stock
concentration, 20 uM), 10 ng of template DNA, and sterilized
distilled water to a 50-pl total final volume. The PCR
thermal profile was as follows: initial denaturation at 95°C
for 5 min, 30 cycles consisting of denaturation at 95°C for
1 min, primer annealing at 53°C for 1 min, and extension
at 72°C for 2 min, and a final elongation step at 72°C for
20 min. Thermocycling was performed on a GeneAmp PCR
system 9700 (Applied Biosystem, Foster City, CA, U.S.A.).
The specificity of the primers was tested with 9 strains
of L. monocytogenes as positive controls. L. ivanovii, L.
innocua, and 5 non-Listeria strains from laboratory stocks
were used as negative controls. PCRs were applied to undiluted
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Fig. 1. Agarose gel electrophoretogram of PCR-amplified Aly
sequences.

PCR products were characterized by comparison with a standard
molecular-size marker (100-bp ladder). Five of 9 positive control strains
and 4 of 9 negative control strains are included in the electrophoretogram.
Lane S, standard size marker; Lane 1, Listeria monocyiogenes ATCC
19111; lane 2, L. monocytogenes ATCC 19113; lane 3, L. monocytogenes
ATCC 19115; lane 4, L. monocytogenes ATCC 19117; lane 5, L.
monocytogenes ATCC 15313; lane 6, L. ivanovii ATCC 19119; lane 7, L.
innocua ATCC 33090; lane 8, Escherichia coli strain B; lane 9,
Pseudomonas aeruginosa PAOL.
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Fig. 2. Agarose gel electrophoretogram of PCR products from
serial dilutions of genomic DNA extracted from Listeria
monocytogenes ATCC 19117.

Lane S, standard molecular size marker (100-bp ladder); Lanes 1 to 7, 10-fold
serial dilutions (10°~ 10" genome equivalents per reaction); Lane 8, undiluted
E. coli genomic DNA as a negative control.

genomic DNAs from positive and negative control strains. PCR
products of the expected size of 132 bp were amplified for
all L. monocytogenes strains, and no products were amplified
for any of the negative control strains (Fig. 1). To evaluate
the sensitivity of PCR, serial dilutions of the genomic DNA
from L. monocytogenes were prepared. The molecular weight
of the L. monocytogenes genome was calculated based on
the average size of the genome (2.96 Mb) (http://cmr.tigr.org).
The amount of genomic DNA in each of the serial dilutions
was converted to the number of genomes equivalent to the
number of L. monocytogenes cells. After the 10-fold serial
dilutions of the genomic DNA were made, PCR was performed
on each diluted DNA sample (10°~10° genome equivalents
[GE] per reaction) using the L-JH-f and L-JH-r primers (Fig. 2).
The assay detected up to 10° L. monocytogenes GE (visible
band in ethidium bromide-stained agarose gel). However, in
the PCR assays, the amplification products are examined by
gel electrophoresis, which may lack sensitivity and specificity,
or by Southern hybridization, which is not convenient for
processing large numbers of samples. Alternatively, an
immunological method (ELISA) was applied for examining
the PCR-amplification products with the newly designed
capture probe in this study, thus facilitating specific and
sensitive detection of the PCR products.

PCR-ELISA was conducted on 10-fold serial dilutions
of L. monocytogenes genome in triplicate. PCR products
were directly labeled with digoxigenin (DIG) during the
PCR-amplification step described above. DIG-11-dUTP
was incorporated into the PCR products by using a PCR-
DIG Labeling kit (Roche Diagnostics, Mannheim, Germany)
according to the manufacturer’s protocol. After PCR-
amplification, the DIG-labeled PCR products (10 pl) were
denatured with 20 ul of denaturation solution (Roche
Diagnostics) at room temperature (25°C) for 10 min. Denatured
PCR products were detected in a sandwich hybridization
assay using streptavidin-coated microtiter plates (Roche
Diagnostics). For each hybridization, a 30-pl aliquot of
denatured PCR product was transferred to each well of a
microtiter plate and incubated at 37°C for 1 h with 220 ul
of hybridization solution (Roche Diagnostics) containing
22 pmole of biotinylated capture probe per mL. The wells
were washed three times at room temperature with 250 pl



1860  Kim and Cho

of washing solution (Roche Diagnostics). Then, 200 ul of
anti-DIG-POD conjugate solution [10 mU/ml peroxidase-
conjugated anti-digoxigenin antibody (Roche Diagnostics)]
was added per well and incubated at 37°C for 30 min. The
wells were washed five times with 250 pl of washing solution
at room temperature, and 200 pl of ABTS (2,2'azinobis[3-
ethylbenzthiazolinesulfonic acid], 1 mg/ml) solution (Roche
Diagnostics) was added to each well to detect bound hybrid.
Spectrophotometric analysis (OD,ys) was performed using
a microtiter plate reader (BioTek, Winooski, VT, U.S.A.) and
measured against the reference wavelength at 492 nm during
color development. Negative controls (sterilized distilled water
and PCR reaction mix with no primers) were included with
each set of tests, and all tests were performed in triplicate.
Positive reactions were determined by calculating the cutoff
values (the mean of 24 replicates of the negative controls
plus 2x standard deviation) for each test.

For colorimetric analysis, OD,; readings were recorded,
averaged, and plotted against color development time for
each dilution series (Fig. 3). Negative controls showed
absorbances of 0.069+0.008, and thus a cutoff level of
0D,5>0.085 was applied to determine a positive result.
The detection limit of PCR~ELISA on L. monocytogenes
was determined to be as low as 32.0 fg, the equivalent of
10 CFUs per PCR reaction. The intensity of the color in
positive samples could be observed with the naked eye
(ODys>0.1) after 10—15 min of the color development.
Additionally, a linear correlation (+*=0.65, P<0.1) between
OD,ys and the cell density of L. monocytogenes was
observed. PCR-ELISA has been reported to increase the
sensitivity of PCR product detection more than electrophoresis-
based methods [15,22,29]. Additionally, PCR-ELISA
increases the specificity the of PCR by avoiding false positives
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Fig. 3. Spectrophotometric analysis (OD,,;) of PCR-ELISA for
detecting Listeria monocytogenes.

OD,; values were plotted against ELISA color development time for each dilution
series of L. monocytogenes. The dotted line indicates the average absorbance
+(2x standard deviation) of negative controls.

due to nonspecific PCR products [15, 17-19, 36]. Increased
specificity of PCR-ELISA is achieved through the use of a
capture probe, which is equivalent to a TagMan probe in
real-time PCR.

Concluding Remarks

Using specifically designed primers and a capture probe,
the PCR-ELISA method described was sensitive enough to
detect L. monocytogenes at levels as low as 10 CFUs (genome
equivalents) per reaction, and this level of detection was
achieved within 5 h. PCR-ELISA has the time advantages
of the DNA-based techniques, the specificity and sensitivity
of Southern hybridization, and the convenience of being
able to accommodate the 96-well microtiter plate format
allowing a larger sample size to be analyzed simultaneously.
Another advantage of this method is that PCR-ELISA can
be easily implemented in portable detection systems without
special equipment such as spectrophotometers and real-
time thermocyclers. For the rapid and sensitive detection
of L. monocytogenes, PCR-ELISA will be a valuable tool
in the ready-to-eat food industry.
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