DOI QR코드

DOI QR Code

Application of the rpoS Gene for Species-Specific Detection of Vibrio vulnificus by Real-Time PCR

  • Kim, Dong-Gyun (Department of Biotechnology, Pukyong National University) ;
  • Ahn, Sun-Hee (Department of Biotechnology, Pukyong National University) ;
  • Kim, Lyoung-Hwa (Biotechnology Research Center, National Fisheries Research and Development Institute) ;
  • Park, Kee-Jai (Korea Food Research Institute) ;
  • Hong, Yong-Ki (Department of Biotechnology, Pukyong National University) ;
  • Kong, In-Soo (Department of Biotechnology, Pukyong National University)
  • Published : 2008.11.30

Abstract

Vibrio vulnificus is a causative agent of serious diseases in humans, resulting from the contact of wound with seawater or consumption of raw seafood. Several studies aimed at detecting V. vulnificus have targeted vvh as a representative virulence toxin gene belonging to the bacterium. In this study, we targeted the rpoS gene, a general stress regulator, to detect V. vulnificus. PCR specificity was identified by amplification of 8 V. vulnificus templates and by the loss of a PCR product with 36 non-V. vulnificus strains. The PCR assay had the 273-bp fragment and the sensitivity of 10 pg DNA from V. vulnificus. SYBR Green I-based real-time PCR assay targeting the rpoS gene showed a melting temperature of approximately $84^{\circ}C$ for the V. vulnificus strains. The minimum level of detection by real-time PCR was 2 pg of purified genomic DNA, or $10^3$ V. vulnificus cells from pure cultured broth and $10^3$ cells in 1 g of oyster tissue homogenates. These data indicate that real-time PCR is a sensitive, species-specific, and rapid method for detecting this bacterium, using the rpoS gene in pure cultures and in infected oyster tissues.

Keywords

References

  1. APHA. 1984. Laboratory Procedures for the Examination of Sea Water and Shellfish, 7th Ed. APHA, Washington, DC, U.S.A
  2. Arias, C. R., E. Garay, and R. Aznar. 1995. Nested PCR method for rapid and sensitive detection of Vibrio vulnificus in fish, sediments, and water. Appl. Environ. Microbiol. 61: 3476-3478
  3. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Smith, J. G. Seidman, and K. Struhl 1987. Current Protocols in Molecular Biology. 2.4.1-2.4.5. John Wiley & Sons Inc., New York, U.S.A
  4. Blackstone, G. M., J. L. Nordstrom, M. C. L. Vickery, M. D. Bowen, R. F. Meyer, and A. DePaola Jr. 2003. Detection of pathogenic parahaemolyticus in oyster enrichments by real-time PCR. J. Microbiol. Meth. 53: 149-155 https://doi.org/10.1016/S0167-7012(03)00020-4
  5. Brauns, L. A., M. C. Hudson, and J. D. Oliver. 1991. Use of the polymerase chain reaction in detection of culturable and nonculturable Vibrio vulnificus cells. Appl. Environ. Microbiol. 57: 2651-2655
  6. De Medici, D., L. Croci, E. Delibato, S. Di Pasquale, E. Filetici, and L. Totk. 2003. Evaluation of DNA extraction methods for use in combination with SYBR Green I real-time PCR to detect Salmonella enterica serotype Enteritidis in poultry. Appl. Environ. Microbiol. 69: 3456-3461 https://doi.org/10.1128/AEM.69.6.3456-3461.2003
  7. Fang, F. C., S. J. Libbey, N. A. Buchmeier, P. C. Loewen, J. Switala, J. Harwood, and D. G. Guiney. 1992. The alternative $\sigma$ factor KafF (RpoS) regulates Salmonella virulence. Proc. Natl. Acad. Sci. USA 8: 11978-11982
  8. Hengge-Aronis, R. 2000. A role for the $\sigma$ s subunit of RNA polymerase in the regulation of bacterial virulence. Adv. Exp. Med. Biol. 485: 85-93
  9. Hengge-Aronis, R. 2000. The general stress response in Escherichia coli, pp. 161-178. In G. Storz and R. Hengge- Aronis (eds.), Bacterial Stress Response. American Society for Microbiology, Washington, DC
  10. Holmstrom, K. and M. Gram. 2003. Elucidation of the Vibrio anguillarum genetic response to the potential fish probiont Pseudomonas fluorescens AH2, using RNA-arbitrarily primed PCR. J. Bacteriol. 185: 831-842 https://doi.org/10.1128/JB.185.3.831-842.2003
  11. Hulsmann, A., T. M. Rosche, I. S. Kong, H. M. Hassan, D. M. Beam, and J. D. Oliver. 2003. RpoS-dependent stress response and exoenzyme production in Vibrio vulnificus. Appl. Environ. Microbiol. 69: 6114-6120 https://doi.org/10.1128/AEM.69.10.6114-6120.2003
  12. Jothikumar, N. and M. W. Griffiths. 2002. Rapid detection of Escherichia coli O157:H7 with multiplex real-time PCR assays. Appl. Environ. Microbiol. 68: 3169-3171 https://doi.org/10.1128/AEM.68.6.3169-3171.2002
  13. Jothikumar, N., X. Wang, and M. W. Griffiths. 2003. Real-time multiplex SYBR green I-based PCR assay for simultaneous detection of Salmonella serovars and Listeria monocytogenes. J. Food Prot. 66: 2141-2145 https://doi.org/10.4315/0362-028X-66.11.2141
  14. Kamio, A., Y. Hara-Kundo, J. Mitasaka, S. Yahiro, and H. Konuma. 2007. Efficiency of real-time polymerase chain reaction assay to detect Vibrio vulnificus in seawater. Int. J. Hyg. Environ. Health In Press
  15. Kaysner, C. A. and A. DePaola Jr. 2001. Vibrio, pp. 405-420. In F. P. Downes and K. Ito (eds.), Compendium of Methods for the Microbiological Examination of Food. American Public Health Association, Washington, DC
  16. Kim, M. S. and H. D. Jeong. 2001. Development of 16S rRNA targeted PCR methods for the detection and differentiation of Vibrio vulnificus in marine environments. Aquaculture 193: 199-211 https://doi.org/10.1016/S0044-8486(00)00495-6
  17. Kowarz, L., C. Coynault, V. Robbes-Saule, and F. Norel. 1994. The Salmonella typhimurium katF (rpoS) gene: Cloning, nucleotide sequence, and regulation of spvV and spvABCD virulence plasmid genes. J. Bacteriol. 176: 6852-6860 https://doi.org/10.1128/jb.176.22.6852-6860.1994
  18. Kumar, H. S., A. Parvathi, I. Karunasagar, and I. Karunasagar. 2006. A gyrB-based PCR for the detection of Vibrio vulnificus and its application for direct detection of this pathogen in oyster enrichment broths. Int. J. Food Microbiol. 111: 216-220 https://doi.org/10.1016/j.ijfoodmicro.2006.05.007
  19. Linkos, D. A. and J. D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174: 207-214 https://doi.org/10.1111/j.1574-6968.1999.tb13570.x
  20. Lin, Z., K. Kumagai, K. Baba, J. J. Mekalanos, and M. Nishibuchi. 1993. Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J. Bacteriol. 175: 3844-3855 https://doi.org/10.1128/jb.175.12.3844-3855.1993
  21. Logan, J. M., K. J. Edwards, N. A. Saunders, and J. Stanley. 2001. Rapid identification of Campylobacter spp. by melting peak analysis of biprobes in real-time PCR. J. Clin. Microbiol. 39: 2227-2232 https://doi.org/10.1128/JCM.39.6.2227-2232.2001
  22. Lyon, W. J. 2001. TaqMan PCR for detection of Vibrio cholerae O1, O139, non-O1, and non-O139 in pure cultures, raw oysters, and synthetic seawater. Appl. Environ. Microbiol. 67: 4685-4693 https://doi.org/10.1128/AEM.67.10.4685-4693.2001
  23. Mark, S. C. and A. C. Wright. 2003. Real-time PCR analysis of Vibrio vulnificus from oysters. Appl. Environ. Microbiol. 69: 7137-7144 https://doi.org/10.1128/AEM.69.12.7137-7144.2003
  24. Maugeri, T. L., M. Carbone, M. T. Fera, and C. Gugliandolo. 2006. Detection and differentiation of Vibrio vulnificus in seawater and plankton of a coastal zone of the Mediterranean Sea. Res. Microbiol. 157: 194-200 https://doi.org/10.1016/j.resmic.2005.06.007
  25. Merrell, D. S., A. D. Tischler, S. H. Lee, and A. Camilli. 2000. Vibrio cholerae requires rpoS for efficient intestinal colonization. Infect. Immun. 68: 6691-6696 https://doi.org/10.1128/IAI.68.12.6691-6696.2000
  26. Norton, D. M. 2002. Polymerase chain reaction-based method for detection of Listeria monocytogenes: Toward real-time screening for food and environmental samples. J. AOAC Int. 85: 505-515
  27. Olsen, A., A. Arnqvist, M. Hammer, S. Sukupolvi, and S. Normark. 1993. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin binding curli in Escherichia coli. Mol. Microbiol. 7: 523-536 https://doi.org/10.1111/j.1365-2958.1993.tb01143.x
  28. Osorio, C. R. and K. E. Klose. 2000. A region of the transmembrane regulatory protein ToxR that tethers the transcriptional activation domain to the cytoplasmic membrane displays wide divergence among Vibrio species. J. Bacteriol. 182: 526-528 https://doi.org/10.1128/JB.182.2.526-528.2000
  29. Panicker, G., M. L. Myers, and A. K. Bej. 2004. Rapid detection of Vibrio vulnificus in shellfish and Gulf of Mexico water by real-time PCR. Appl. Environ. Microbiol. 70: 498-507 https://doi.org/10.1128/AEM.70.1.498-507.2004
  30. Parvathi, A., H. S. Kumar, I. Karunasagar, and I. Karunasagar. 2005. Study of the occurrence of Vibrio vulnificus in oysters in India by polymerase chain reaction (PCR) and heterogeneity among V. vulnificus by randomly amplified polymorphic DNA PCR and gyrB sequence analysis. Environ. Microbiol. 7: 995-1002 https://doi.org/10.1111/j.1462-2920.2005.00770.x
  31. Peeler, J. T., G. A. Houghtby, and A. P. Rainosek. 1992. The most probable number technique, pp. 105-120. In F. P. Downes and K. Ito (eds.), Compendium of Methods for the Microbiological Examination of Food. American Public Health Association, Washington, DC
  32. Rantakokko-Jalava, K. and J. Jalava. 2001. Development of conventional and real-time PCR assays for detection of Legionella DNA in respiratory specimens. J. Clin. Microbiol. 39: 2904-2910 https://doi.org/10.1128/JCM.39.8.2904-2910.2001
  33. Stubner, S. 2002. Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection. J. Microbiol. Meth. 50: 155-164 https://doi.org/10.1016/S0167-7012(02)00024-6
  34. Takahashi, H., H. K. Yukiko, M. Jiro, K. Susumu, and K. Hirotaka. 2005. Development of a quantitative real-time polymerase chain reaction targeted to the toxR for detection of Vibrio vulnificus. J. Microbiol. Meth. 61: 77-85 https://doi.org/10.1016/j.mimet.2004.11.005
  35. Wang, R. F., W. W. Cao, and C. E. Cerniglia. 1997. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J. Appl. Microbiol. 83: 727-736 https://doi.org/10.1046/j.1365-2672.1997.00300.x

Cited by

  1. Development of TaqMan Probe-Based Real-Time PCR Method for erm(A), erm(B), and erm(C), Rapid Detection of Macrolide-Lincosamide-Streptogramin B Resistance Genes, from Clinical Isolates vol.19, pp.11, 2008, https://doi.org/10.4014/jmb.0902.0062
  2. SYBR Green I-based real-time PCR targeting the rpoX gene for sensitive and rapid detection of Vibrio alginolyticus vol.25, pp.2, 2011, https://doi.org/10.1016/j.mcp.2011.02.002
  3. Rapid and sensitive detection of Vibrio vulnificus by loop-mediated isothermal amplification combined with lateral flow dipstick targeted to rpoS gene vol.25, pp.4, 2008, https://doi.org/10.1016/j.mcp.2011.04.001
  4. Application of groEL gene for the species‐specific detection of Vibrio parahaemolyticus by PCR vol.54, pp.1, 2008, https://doi.org/10.1111/j.1472-765x.2011.03174.x
  5. PCR-RFLP에 의한 Vibrio core group을 포함한 Vibrio 종의 구분 vol.22, pp.2, 2008, https://doi.org/10.5352/jls.2012.22.2.245
  6. Development of a multiplex PCR for the identification of pathogenic Edwardsiella tarda and application to edwardsiellosis diagnostics vol.36, pp.2, 2008, https://doi.org/10.1111/j.1365-2761.2012.01446.x
  7. Development of a Real-Time Resistance Measurement for Vibrio parahaemolyticus Detection by the Lecithin-Dependent Hemolysin Gene vol.8, pp.8, 2008, https://doi.org/10.1371/journal.pone.0072342
  8. Species-Specific Duplex PCR for Detecting the Important Fish Pathogens Vibrio anguillarum and Edwardsiella tarda vol.16, pp.4, 2008, https://doi.org/10.5657/fas.2013.0273
  9. Species-specific detection of Vibrio alginolyticus in shellfish and shrimp by real-time PCR using the groEL gene vol.24, pp.1, 2008, https://doi.org/10.1007/s10499-015-9916-5
  10. Development of Duplex Loop-Mediated Isothermal Amplification (dLAMP) Combined with Lateral Flow Dipstick (LFD) for the Rapid and Specific Detection ofVibrio vulnificusandV. parahaemolyticus vol.78, pp.4, 2008, https://doi.org/10.1080/15222055.2016.1173609
  11. Simultaneous Identification of 13 Foodborne Pathogens by Using Capillary Electrophoresis-Single Strand Conformation Polymorphism Coupled with Multiplex Ligation-Dependent Probe Amplification and Its A vol.13, pp.10, 2016, https://doi.org/10.1089/fpd.2016.2143
  12. Rapid and Sensitive Detection of Vibrio parahaemolyticus and Vibrio vulnificus by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique vol.21, pp.1, 2008, https://doi.org/10.3390/molecules21010111
  13. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products vol.59, pp.4, 2019, https://doi.org/10.1080/10408398.2017.1384715
  14. Pre-enrichment step, incubation temperature and type of selective media affect the pathogenic Vibrio parahaemolyticus detection efficiency in frozen prawns vol.14, pp.4, 2008, https://doi.org/10.1007/s00003-019-01237-1
  15. Development of a SPECIES‐SPECIFIC monoclonal antibody for rapid detection and identification of foodborne pathogen VIBRIO VULNIFICUS vol.41, pp.6, 2008, https://doi.org/10.1111/jfs.12939