DOI QR코드

DOI QR Code

Regulation of $CO_2$ Fixation Gene Expression in Acidithiobacillus ferrooxidans ATCC 23270 by Lix984n Shock

  • Wang, Wei (School of Minerals Processing and Bioengineering, Central South University) ;
  • Xiao, Shuiming (School of Minerals Processing and Bioengineering, Central South University) ;
  • Chao, Jing (School of Minerals Processing and Bioengineering, Central South University) ;
  • Chen, Qijiong (School of Minerals Processing and Bioengineering, Central South University) ;
  • Qiu, Guanzhou (School of Minerals Processing and Bioengineering, Central South University) ;
  • Liu, Xueduan (School of Minerals Processing and Bioengineering, Central South University)
  • Published : 2008.11.30

Abstract

Acidithiobaeillus ferrooxidans ATCC 23270 is an important model organism for bioleaching and bioremediation studies owing to its diverse metabolic capabilities, whereas lix984n is a widely used extractant. Little is known about the response of cbb genes in A. ferrooxidans to lix984n shock. Thus, to elucidate the response of the $CO_2$ fixation genes in A. ferrooxidans ATCC 23270 to the addition of lix984n, the gene expression of cbb genes was examined using a real-time PCR. Although a natural increase or decrease in the expression of most cbb genes was observed after 5 min of shock with 3% (v/v) lix984n, sdhC and cbbR exhibited quick responses to the shock. Ten min of shock had a greater effect on the cbb gene expression, yet 15 min of shock had a significant effect on the Calvin cycle in A. ferrooxidans ATCC 23270, as the expression of all the cbb genes reached a very high level. Therefore, after a short lix984n shock, a solution of A. ferrooxidans can be re-used for bioleaching.

Keywords

References

  1. Appia-Ayme, C., R. Quatrini, Y. Denis, F. Denizot, S. Silver, F. Roberto, et al. 2006. Microarray and bioinformatics analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans. Hydrometallurgy 83: 273-280 https://doi.org/10.1016/j.hydromet.2006.03.029
  2. Arbiter, N. and A. W. Fletcher. 1994. Copper hydrometallurgy - Evolution and milestones. Mining Eng. 46: 118-123
  3. Bevilaqua, D., A. Leite, O. Garcia, and O. H. Tuovinen. 2002. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Proc. Biochem. 38: 587-592
  4. Charlier, H. A., J. A. Runquist, and H. M. Miziorko. 1994. Evidence supporting catalytic roles for aspartate residues in phosphoribulokinase. Biochemistry 33: 9343-9350 https://doi.org/10.1021/bi00197a039
  5. Chatain, V., R. Bayard, F. Sanchez, P. Moszkowicz, and R. Gourdon. 2005. Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions. Environ. Int. 31: 221-226 https://doi.org/10.1016/j.envint.2004.09.019
  6. Dijkhuizen, L. and W. Harder. 1984. Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria. Antonie van Leeuwenhoek 50: 473-487 https://doi.org/10.1007/BF02386221
  7. Falcone, D. L. and F. R. Tabita, 1993. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase/oxygenase deletion strain of Rhodospirillum rubrum. J. Bacteriol. 175: 5066-5077 https://doi.org/10.1128/jb.175.16.5066-5077.1993
  8. Gale, N. L. and J. V. Beck. 1967. Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans. J. Bacteriol. 94: 1052-1059
  9. Gibson, J. L., J. H. Chen, P. A. Tower, and F. R. Tabita. 1990. The form II fructose 1,6-bisphosphatase and phosphoribulokinase genes form part of a large operon in Rhodobacter sphaeroides: Primary structure and insertional mutagenesis analysis. Biochemistry 29: 8085-8093 https://doi.org/10.1021/bi00487a014
  10. Gibson, J. L., D. L. Falcone, and F. R. Tabita. 1991. Nucleotide sequence, transcriptional analysis and expression of genes encoded within the form I $CO_2$ fixation operon of Rhodobacter sphaeroides. J. Biol. Chem. 266: 14646-14653
  11. Gibson, J. L. and F. R. Tabita. 1996. The molecular regulation of the reductive pentose phosphate pathway in proteobacteria and cyanobacteria. Arch. Microbiol. 166: 141-150 https://doi.org/10.1007/s002030050369
  12. Harris, S., A. Ebert, E. Schutze, M. Diercks, E. Bock, and J. M. Shively. 1988. Two different genes and gene products for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCOase) in Nitrobacter hamburgensis. FEMS Microbiol. Lett. 49: 267-271 https://doi.org/10.1111/j.1574-6968.1988.tb02728.x
  13. Hartman, F. C. and M. R. Harpel. 1994. Structure, function, regulation and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu. Rev. Biochem. 63: 197-234 https://doi.org/10.1146/annurev.bi.63.070194.001213
  14. Hayashi, N. R., H. Arai, T. Kodama, and Y. Igarashi. 1997. The novel genes, cbbQ and cbbO, located downstream from the RubisCO genes of Pseudomonas hydrogenothermophila, affect the conformational states and activity of RubisCO. Biochem. Biophy. Res. Commun. 241: 565-569 https://doi.org/10.1006/bbrc.1997.7853
  15. Hayashi, N. R., H. Arai, T. Kodama, and Y. Igarashi. 1998. The nirQ gene, which is required for denitrification of Pseudomonas aeruginosa, can activate the RubisCO from Pseudomonas hydrogenothermophila. Biochim. Biophys. Acta 1381: 347-350 https://doi.org/10.1016/S0304-4165(98)00045-2
  16. Hayashi, N. R., A. Oguni, T. Yagushi, S. Y. Chung, H. Nishihara, T. Kodama, and Y. Igarashi. 1998. Different properties of gene products of three sets of ribulose-1,5-bisphosphate carboxylase/ oxygenase from a marine obligately autotrophic hydrogenoxidizing bacterium, Hydrogenovibrio marinus strain MH 10. J. Ferment. Bioeng. 85: 150-155 https://doi.org/10.1016/S0922-338X(97)86759-1
  17. Hayashi, N. R., H. Arai, T. Kodama, and Y. Igarashi. 1999. The cbbQ genes, located downstream of the form I and form II RubisCO genes, affect the activity of both RubisCOs. Biochem. Biophys. Res. Commun. 265: 177-183 https://doi.org/10.1006/bbrc.1999.1103
  18. Heinhorst, S., S. H. Baker, D. R. Johnson, P. S. Davies, G. C. Cannon, and J. M. Shively. 2002. Two copies of form I RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270. Curr. Microbiol. 45: 115-117 https://doi.org/10.1007/s00284-001-0094-5
  19. Henikoff, S., G. W. Haughn, J. M. Calvo, and J. C. Wallace. 1988. A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. USA 85: 6602-6606
  20. Jian-she, L., Q. Guan-zhou, G. Yu-qing, and X. Jing. 2002. Extraction of copper from bacterial leach solution using Lix984. Trans. Nonferrous Met. Soc. China 12: 313-316
  21. Jianshe, L., G. Yuqing, Q. Guanzhou, and W. Dianzuo. 2002. Selectively extract copper from copper, iron and zinc acid solution. Hydrometallurgy of China 21(2): 88-90
  22. Jikui, Z. and N. Yinjian. 2005. Advance in research of biological metallurgy of sulfide ore. Metal Mine 346: 24-30
  23. Ki-Hyeong, R. and D. Julian. 2006. Transcription analysis of daptomycin biosynthetic genes in Streptomyces roseosporus. J. Microbiol. Biotechnol. 16: 480-483
  24. Kobyashi, H., A. M. Viale, T. Takabe, T. Akazawa, K. Wada, K. Shinozaki, K. Kobayashi, and M. Sugiura. 1991. Sequence and expression of genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from Chromatium vinosum. Gene 97: 55-62 https://doi.org/10.1016/0378-1119(91)90009-Z
  25. Kreiger, T. J., L. Mende-Mueller, and H. M. Miziorko. 1987. Phosphoribulokinase: Isolation and sequence determination of the cysteine-containing active-site peptide modified by 5'-pfluorosulfonylbenzoyladenosine. Biochim. Biophys. Acta 915: 112-119 https://doi.org/10.1016/0167-4838(87)90130-0
  26. Kreiger, T. J. and H. M. Miziorko. 1986. Affinity labeling and purification of spinach leaf ribulose-5-phosphate kinase. Biochemistry 25: 247-252
  27. Kusano, T., T. Takeshima, C. Inoue, and K. Sugawara. 1991. Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans. J. Bacteriol. 173: 7313-7323 https://doi.org/10.1128/jb.173.22.7313-7323.1991
  28. Kusian, B. and B. Bowien. 1997. Organization and regulation of cbb $CO_2$ assimilation genes in autotrophic bacteria. FEMS Microbiol. Rev. 21: 135-155 https://doi.org/10.1111/j.1574-6976.1997.tb00348.x
  29. Liu, X, J. Lin, Z. Zhang, J. Bian, Q. Zhao, Y. Liu, J. Lin, and W. Yan. 2007. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04. J. Microbiol. Biotechnol. 17: 162-167
  30. Mazuelos, A., N. Iglesias, and F. Carranza. 1999. Inhibition of bioleaching process by organics from solvent extraction. Proc. Biochem. 35: 425-431
  31. Meijer, W. G., A. C. Arnberg, P. Enequist, P. Terpstra, M. E. Lidstrom, and L. Dijkhuizen. 1991. Identification and organization of carbon dioxide fixation genes in Xanthobacter flavus H4-14. Mol. Gen. Genet. 225: 320-330 https://doi.org/10.1007/BF00269865
  32. Nishihara, H., T. Yaguchi, S. Y. Chung, K. Suzuki, M. Yanagi, K. Yamasato, T. Kodama, and Y. Igarashi. 1998. Phylogenetic position of an obligately chemoautotrophic, marine hydrogenoxidizing bacterium, Hydrogenovibrio marinus, on the basis of 16S rRNA sequences and two form I RuBisCO gene sequences. Arch. Microbiol. 169: 364-368 https://doi.org/10.1007/s002030050584
  33. Paoli, G. C., P. Vichivanives, and F. R. Tabita. 1998. Physiological control and regulation of the Rhodobacter capsulatus cbb operons. J. Bacteriol. 180: 4258-4269
  34. Petersson, G. and U. Ryde-Petersson. 1989. Dependence of the Calvin cycle activity on kinetic parameters for the interaction of non-equilibrium cycle enzymes with their substrates. Eur. J. Biochem. 186: 683-687 https://doi.org/10.1111/j.1432-1033.1989.tb15260.x
  35. Shi, S. Y. and Z. H. Fang. 2005. Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor. Int. J. Miner. Process. 76: 3-12 https://doi.org/10.1016/j.minpro.2004.05.005
  36. Shively, J. M., G. van Keulen, and W. G. Meijer. 1998. Something from almost nothing: Carbon dioxide fixation in chemoautotrophs. Annu. Rev. Microbiol. 52: 191-230 https://doi.org/10.1146/annurev.micro.52.1.191
  37. Silver, M. 1970. Oxidation of elemental sulfur and sulfur compounds and CO2 fixation by Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can. J. Microbiol. 16: 845-849 https://doi.org/10.1139/m70-142
  38. Spiridonova, E. M., I. A. Berg, T. V. Kolganova, R. N. Ivanovskv, B. B. Kuznetsov, and T. P. Tourova. 2004. An oligonucleotide primer system for amplification of the ribulose- 1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology 73: 316-325 https://doi.org/10.1023/B:MICI.0000032243.93917.30
  39. Strecker, M., E. Sickinger, R. S. English, J. M. Shively, and E. Bock. 1994. Calvin cycle genes in Nitrobacter vulgaris T3. FEMS Microbiol. Lett. 120: 45-50 https://doi.org/10.1111/j.1574-6968.1994.tb07005.x
  40. Tabita, F. R. 1999. Microbial ribulose-1,5-bisphosphate carboxylase/oxygenase: A different perspective. Photosynth. Res. 60: 1-28 https://doi.org/10.1023/A:1006211417981
  41. Tabita, R. and D. G. Lundgren. 1971. Utilization of glucose and the effect of organic compounds on the chemolithotroph Thiobacillus ferrooxidans. J. Bacteriol. 108: 328-333
  42. Terazono, K., N. R. Hayashi, and Y. Igarashi. 2001. CbbR, a LysR-type transcriptional regulator from Hydrogenophilus thermoluteolus, binds two cbb promoter regions. FEMS Microbiol. Lett. 198: 151-157 https://doi.org/10.1111/j.1574-6968.2001.tb10635.x
  43. Tichi, M. A. and F. R. Tabita. 2002. Metabolic signals that lead to control of cbb gene expression in Rhadobacter capsulatus. J. Bacteriol. 184: 1905-1915 https://doi.org/10.1128/JB.184.7.1905-1915.2002
  44. Viale, A. M., H. Kobayashi, and T. Akazawa. 1989. Expressed genes for plant-type ribulose-1,5-bisphosphate carboxylase/ oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of the genes. J. Bacteriol. 171: 2391-2400 https://doi.org/10.1128/jb.171.5.2391-2400.1989
  45. Viale, A. M., H. Kobayashi, T. Akazawa, and S. Henikoff. 1991. rbcR, a gene coding for a member of the LysR family of transcriptional regulators, is located upstream of the expressed set of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in the photosynthetic bacterium Chromatium vinosum. J. Bacteriol. 173: 5224-5229 https://doi.org/10.1128/jb.173.16.5224-5229.1991
  46. Windhovel, U. and B. Bowien. 1991. Identification of cfxR, an activator gene of autotrophic $CO_2$ fixation in Alcaligenes eutrophus. Mol. Microbiol. 5: 2695-2705 https://doi.org/10.1111/j.1365-2958.1991.tb01978.x
  47. Yarzabal, A., K. Duquesne, and V. Bonnefoy. 2003. Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur- and in ferrous iron media. Hydrometallurgy 71: 107-114 https://doi.org/10.1016/S0304-386X(03)00146-4
  48. Yarzabal, A., C. Appia-Ayme, J. Ratouchniak, and V. Bonnefoy. 2004. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150: 2113-2123 https://doi.org/10.1099/mic.0.26966-0
  49. Zhuo-yue, L., H. Yue-hua, L. Jian-she, and W. Jun. 2005. Solvent extraction of copper and zinc from bioleaching solutions with LIX984 and D2EHPA. J. Central South Univ. Technol. 12: 45-49

Cited by

  1. Insights into the pH up-shift responsive mechanism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling vol.56, pp.5, 2008, https://doi.org/10.1007/s12223-011-0067-4
  2. The co-culture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and CO2 fixation vol.193, pp.12, 2008, https://doi.org/10.1007/s00203-011-0723-8
  3. CO2 utilizing microbes - A comprehensive review vol.29, pp.6, 2008, https://doi.org/10.1016/j.biotechadv.2011.08.009
  4. Gene expression modulation by heat stress in Acidithiobacillus ferrooxidans LR vol.101, pp.3, 2008, https://doi.org/10.1007/s10482-011-9673-z
  5. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/203197
  6. Experiences and Future Challenges of Bioleaching Research in South Korea vol.6, pp.4, 2008, https://doi.org/10.3390/min6040128
  7. A review on biological systems for CO2 sequestration: Organisms and their pathways vol.38, pp.1, 2008, https://doi.org/10.1002/ep.12946
  8. Responses of Acidithiobacillus thiooxidans A01 to Individual and Joint Nickel (Ni2+) and Ferric (Fe3+) vol.9, pp.2, 2008, https://doi.org/10.3390/min9020082
  9. A review on biological carbon sequestration: A sustainable solution for a cleaner air environment, less pollution and lower health risks vol.33, pp.2, 2021, https://doi.org/10.1016/j.jksus.2020.101282