Solubilization of Sewage Sludge by Inoculation of Lactic Acid Bacteria

유산균 접종에 의한 하수 슬러지의 가용화

  • Yang, Hyun-Sang (Department of Environmental. Engineering, Suwon University) ;
  • Lee, Jung-Eun (Department of Environmental. Engineering, Suwon University) ;
  • Lee, Eun Young (Department of Environmental. Engineering, Suwon University)
  • Published : 2008.09.28

Abstract

A new approach to the solubilization of excess activated sludge by the inoculation of lactic acid bacteria was studied to reduce the amount of sludge produced in the activated sludge treatment process. Aerobic microorganism in sludge was lysed in anaerobic condition and the cytoplasmic substance eluted was utilized as a carbon source by lactic acid bacteria. On the basis of sludge solubilization efficiency, Lactobacillus brevis and Leuconostoc mesenteroides subsp mesenteroides were selected the best candidates among five kinds of Lactobacillus sp. and seven kinds of Leuconostoc sp. The sludge solubilization efficiency by heterofermentative lactic acid bacteria was more efficient than that of homofermentative bacteria. Initial value of soluble COD (sCOD) was 1050 mg/L at the initial inoculation time increased to 3070 mg/L (192% solubilization) at 96 h of the incubation time. The inoculation of lactobacillus brevis to the sludge resulted in 2824% increase in sCOD value after 96 h of incubation than the control experiment. Leuconostoc mesenteroides subsp mesenteroides showed 152% increase of solubilization and 30% increase of S-COD/T-COD on 96 h of incubation time. Considering the increase of S-COD by the inoculation of Leuconostoc sp. on 24 h, 10% inoculation of lactic acid bacteria to the sludge was most effective.

Keywords

References

  1. 박용하, 장영효, 윤정훈, 김홍중. 1999. 유산균의 연구와 최근 분류학적 고찰. 한국미생물생명공학회지. 12: 35-43
  2. 배재근. 2006. 유기성오니의 효율적 관리 및 처리를 위한 시스템 구축방안. 한국폐기물학회 춘계학술연구발표회논문집. pp.79-98
  3. 편의식, 배재근. 2006. 유산균을 이용한 슬러지 감량화와 탈수성 개선에 관한 연구. 한국폐기물학회 춘계학술연구회발표논문집. pp. 163-167
  4. 환경부. 2005. 전국 폐기물 발생 및 처리 현황
  5. 환경부. 2007. 하수슬러지 관리 기본계획
  6. 환경부. 2007. 런던협약 96의정서 발효에 따른 하수슬러지 관리 종합대책
  7. Ahn, K.-H., K.-Y. Park, S. K. Maeng, J. H. Hwang, J. W. Lee, K.-G. Song, and S. Choi. 2002. Ozonation of wastewater sludge for reduction and recycling. Wat. Sci. Tech. 46 (10): 71-77
  8. APHA. 1999. Standards Methods for the Examination of Water and Wastewater (20th ed.). American Public Health Association. Washington, DC
  9. Bogdanov, I. G., P. Popkhristov, and L. Marinov. 1962. Effect of antibioticum bulgaricum on Sarcoma 180 and the soild of Ehlich carcinoma. Abstr. Cancer Congress. Intl. 1: 364-365
  10. Cha, S. Y. 1996. A study on new technology of waste treatment combining microwave with UV. Master's thesis, School of Chem, Eng. and Technol., Yengnam University, Korea
  11. Chen, G. H., K. J. An, S. Sebastien, B. Etienne, and D. Malik. 2003. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process. J. Water Res. 37: 3855-3866 https://doi.org/10.1016/S0043-1354(03)00331-2
  12. Chevalier, P., D. Roy, and P. Ward. 1990. Detection of Biofidobacterium species by enzymatic methods. J. Appl. Bact. 68: 619-624 https://doi.org/10.1111/j.1365-2672.1990.tb05227.x
  13. Chu, L.-B., S.-T. Yana, X.-H. Xinga, A.-F. Yua, X.-L. Sunb, and B. Jurcikb. 2008. Enhanced sludge solubilization by microbubble ozonation. Chemosphere 72: 205-212 https://doi.org/10.1016/j.chemosphere.2008.01.054
  14. Cummings, J. H. and G. T. Macfarlance. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bact. 70: 443-459 https://doi.org/10.1111/j.1365-2672.1991.tb02739.x
  15. Eskicioglua, C., K. J. Kennedy, and R. L. Drostea. 2006. Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Wat. Res. 40: 3725-3756 https://doi.org/10.1016/j.watres.2006.08.017
  16. Eskicioglua, C., N. Terzianb, K. J. Kennedya, R. L. Drostea, and M. Hamodac. 2007. Athermal microwave effects for enhancing digestibility of waste activated sludge. Wat. Res. 41: 2457-2466 https://doi.org/10.1016/j.watres.2007.03.008
  17. Garrity, M. and M. George. 1986. Bergy's Manual of Systematic Bacteriology. 8: 110-118
  18. Goldin, B. R., L. Swenson, J. Dwyer, M. Sexton, and S. L. Gorbach. 1980. Effect of Lactobacillus acidophillus supplements on human fecal bacterial enzymes. J. Natl. Cancer. Inst. 64: 255-261 https://doi.org/10.1093/jnci/64.2.255
  19. Goldin, B. R. and S. L. Gorbach. 1980. Effect of Lactobacillus acidophillus dietary supplements on 1, 2-dimethyl hydrazine dihydrochloride-induced intestinal cancer in rats. J. Natl. Cancer. Inst. 64: 263-265 https://doi.org/10.1093/jnci/64.2.263
  20. Hofvendahl, K. and B. Hajn-Hagerdal. 2000. Factors affecting the fermentative lactic acid production from renewable resource. Enz. Microbial. Tech. 26: 87-107 https://doi.org/10.1016/S0141-0229(99)00155-6
  21. Isolauri, E., M. Juntunen, T. Rautanen, P. Sillanaukee, and T. Koivula. 1991. A human Lactobacillus strain(Lactobacillus GG) promotes recovery from acute diarrhea in children. Pediatrics 88: 90-97
  22. Jorand, F., F. Zartarizan, F. Thomas, J. C. Block, J. Y. Bottero, G. Villemin, V. Ubrain, and J. Manem. 1995. Chemical and structural (2D) linkage between bacteria within activated sludge flocs. Wat. Res., 29: 1639-1647 https://doi.org/10.1016/0043-1354(94)00350-G
  23. Jung, D. Y., S. M. Lee, Y. M. Koo, and J. S. So. 2003. Optimum condition for simultaneous saccharification and fermentation of paper sludge to produce lactic acid and viable Lactobacillus cells. Kor. J. Biot. Bioeng. 18: 14-18
  24. Karuna, S. and D. J. Lee. 2007. Status and prospects of biodiesel and bioethanol industry. Kor. J. Intl. Agri. 19: 20-28
  25. Kimbauer, R., F. Booy, D. R. Lowy, and J. T. Schiller. 1992. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. 92: 11553-11557
  26. Marquesa, S., J. A. L. Santosb, F. M. Girioa, and J. C. Roseiro. 2008. Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochem. Eng. J. In press
  27. Mller J., G. Lehene, J. Schwedes, S. Battenberg, R. Naveke, J. Kopp, N. Dichtl, A. Scheminski, R. Krull, and D. C. Hempel. 2001. Disintegration of sewage sludge and influenceon anaerobic digestion. Wat. Sci. Tech., 38: 425-433 https://doi.org/10.1016/S0273-1223(98)00720-3
  28. Oh, C. Y. and W. K. Lee. 2000. Antitumor activity of lactic acid bacteria isolated from human intestine against Sarcoma 180 in mice. Kor. J. Anin. Sci. 16: 237-244
  29. Ohkouchia, Y. and Y. Inoue. 2006. Direct production of l(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Biores. Technol. 97: 1554-1562 https://doi.org/10.1016/j.biortech.2005.06.004
  30. Scheminski A., R. Kull, and D. C. Hempel. 2000. Oxidative treatment of digested sewage sludge with ozone, Wat. Sci. Tech., 42(9): 151-158 https://doi.org/10.2166/wst.2000.0193
  31. Tiehm A., K. Nickel, M. Zellhorn, and U. Neis. 2001. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Wat. Res. 35(8): 2003-2009 https://doi.org/10.1016/S0043-1354(00)00468-1
  32. Vlyssides, A. G. and P. K. Karlis. 2004. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Biores. Tech. 91: 201-206 https://doi.org/10.1016/S0960-8524(03)00176-7
  33. Yanga, S. Y., K. S. Jib, Y. H. Baikb, W. S. Kwakb, and T. A. McCaskeyc. 2006. Lactic acid fermentation of food waste for swine feed. Biores. Technol. 97: 1858-1864 https://doi.org/10.1016/j.biortech.2005.08.020