Real-Time PCR for Quantitative Detection of Bovine Parvovirus during Manufacture of Biologics

생물의약품 제조공정에서 Bovine Parvovirus 정량 검출을 위한 Real-Time PCR

  • Lee, Dong-Hyuck (Department of Biological Sciences, Hannam University) ;
  • Lee, Jung-Hee (Department of Biological Sciences, Hannam University) ;
  • Kim, Chan-Kyong (Department of Biological Sciences, Hannam University) ;
  • Kim, Tae-Eun (Department of Biological Sciences, Hannam University) ;
  • Bae, Jung-Eun (Department of Biological Sciences, Hannam University) ;
  • Kim, In-Seop (Department of Biological Sciences, Hannam University)
  • 이동혁 (한남대학교 생명.나노과학대학 생명과학과) ;
  • 이정희 (한남대학교 생명.나노과학대학 생명과학과) ;
  • 김찬경 (한남대학교 생명.나노과학대학 생명과학과) ;
  • 김태은 (한남대학교 생명.나노과학대학 생명과학과) ;
  • 배정은 (한남대학교 생명.나노과학대학 생명과학과) ;
  • 김인섭 (한남대학교 생명.나노과학대학 생명과학과)
  • Published : 2008.09.28

Abstract

Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biologics such as biopharmaceuticals, tissue-engineered products, and cell therapy. Manufacturing processes for the biologics have the risk of viral contamination. Therefore viral validation is essential in ensuring the safety of the products. Bovine parvovirus (BPV) is one of the common bovine pathogens and has widely been known as a possible contaminant of biologics. In order to establish the validation system for the BPV safety of biologics, a real-time PCR method was developed for quantitative detection of BPV contamination in raw materials, manufacturing processes, and final products. Specific primers for amplification of BPV DNA were selected, and BPV DNA was quantified by use of SYBR Green 1. The sensitivity of the assay was calculated to be $1.3{\times}10^{-1}\;TCID_{50}/mL$. The real-time PCR method was validated to be reproducible and very specific to BPV. The established real-time PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BPV. BPV DNA could be quantified in CHO cell as well as culture supernatant. Also the real-time PCR assay could detect $1.3{\times}10^0\;TCID_{50}/mL$ of BPV artificially contaminated in bovine collagen. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BPV contamination during manufacture of biologics.

소의 혈액, 세포, 조직, 기관 등은 생물의약품과 조직공학제제, 세포치료제의 원료로 널리 사용되고 있다. 소유래 물질을 원료로 사용한 제제의 경우 소유래 원료 물질에 다양한 바이러스가 오염된 사례가 있기 때문에 바이러스 안전성 검증이 필수적이다. BPV는 소에게 가장 흔하게 감염되는 바이러스 중의 하나이다. 소유래 물질을 원료로 하는 생물의약품, 조직공학제제, 세포치료제 등에서 BPV 안전성을 확보하기 위해, 원료물질, 제조공정, 완제품에서 BPV를 정량적으로 검출하고, 제조공정에서 BPV 제거 검증을 위한 시험법으로 활용이 가능한 BPV real-time PCR 시험법을 확립하였다. BPV에 특이적인 primer를 선별하였으며, 형광염료 SYBR Green I을 사용하여 BPV DNA 정량 검출 시험법을 최적화하였다. 세포배양법에 의한 감염역가와 비교한 결과 real-time PCR 민감도는 $1.3{\times}10^{-1}\;TCID_{50}/mL$이었다. 확립된 시험법의 신뢰성(reliability)을 보증하기 위해 시험법 검증을 실시한 결과 특이성(specificity)과 재현성 (reproducibility)이 우수함을 확인하였다. 확립된 real-time PCR을 생물의약품 제조공정 검증에 적용할 수 있는지 확인하기 위하여 인위적으로 BPV를 오염시킨 CHO 세포주와 소유래 콜라겐에서 BPV 검출 시험을 실시하였다. BPV를 감염시킨 CHO 세포에서 세포변병효과를 관찰할 수 없었지만, 세포와 세포배양 상청액에서 BPV를 정량적으로 검출할 수 있었다. 소유래 콜라겐에서도 $1.3{\times}10^0\;TCID_{50}/mL$까지 정량적으로 검출할 수 있었다.

Keywords

References

  1. Adamson, S. R. 1999. Experiences of virus, retrovirus and retrovirus-like particles in chinese hamster ovary (CHO) and hybridoma cells used for production of protein therapeutics. Dev. Biol. Stand. 93: 89-96
  2. Barnes, M. A., R. E. Wright, A. B. Bodine, and C. F. Alberty. 1982. Frequency of bluetongue and bovine parvovirus infection in cattle in South Carolina dairy herds. Am. J. Vet. Res. 43: 1078-1080
  3. Belak, S. 2007. Molecular diagnosis of viral diseases, present trends and future aspects: A view from the OIE collaborating centre for the application of polymerase chain reaction methods for diagnosis of viral diseases in veterinary medicine. Vaccine 25: 5444-5452 https://doi.org/10.1016/j.vaccine.2006.11.068
  4. Belak, S. and P. Thoren. 2001. Molecular diagnosis of animal diseases: some experiences over the past decade. Expert Rev. Mol. Diagn. 1: 434-443 https://doi.org/10.1586/14737159.1.4.434
  5. Celis, P. and G. Silvester. 2004. European regulatory guidance on virus safety of recombinant proteins, monoclonal antibodies and plasma derived medicinal products. Dev. Biol. Stand. 118: 3-10
  6. Chen, K. C., B. C. Shull, E. A. Moses, M. Lederman, E. R. Stout, and R. C. Bates. 1986. Complete nucleotide sequence and genome organization of bovine parvovirus. J. Virol. 60: 1085-1097
  7. Cho, H. M., D. H. Lee, H. M. Kim, and I. S. Kim. 2008. Real-time RT-PCR for quantitative detection of bovine viral diarrhoea virus during manufacture of biologics. Kor. J. Microbiol. Biotechnol. 36: 34-42
  8. Choi, Y.-M., J.-K. Kim, J.-I. Park, and S.-W. Jeong. 2006. Evaluation of bovine amniotic membrane for the treatment of superficial canine corneal ulcer. J. Vet. Clinics 23: 334-336
  9. Code of federal regulation 9 (9CFR), animal and animal products. 1996. part 113.53. Requirement for ingredients of animal origin used for production of biologics
  10. Darling, A. 2002. Validation of biopharmaceutical purification process for virus clearance evaluation. Mol. Biotechnol. 21: 57-83 https://doi.org/10.1385/MB:21:1:057
  11. Erickson, G. A., S. R. Bolin, and J. G. Landgraf. 1991. Viral contamination of fetal bovine serum used for tissue culture: risks and concerns. Dev. Biol. Stand. 75: 173-175
  12. Faraj, K. A., T. H. van Kuppevelt, and W. F. Daamen. 2007. Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues. Tissue Eng. 13: 2387-2394 https://doi.org/10.1089/ten.2006.0320
  13. Gajiwala, K. and A. L. Gajiwala. 2004. Evaluation of lyophilised, gamma-irradiated amnion as a biological dressing. Cell Tissue Bank. 5: 73-80 https://doi.org/10.1023/B:CATB.0000034076.16744.4b
  14. Garnick, R. L. 1998. Raw materials as a source of contamination in large-scale cell culture. Dev. Biol. Stand. 93: 21-29
  15. Horaud, F. 1991. Introductory remark: viral safety of biologicals. Dev. Biol. Stand. 75: 3-7
  16. International Conference on Harmonisation. 1998. Guidance on viral safety evaluation of biotechnology products derived from cell lines of human or animal origin; availability. Federal Resister 63: 51074-51084
  17. Jennings, A. 1999. Detecting viruses in sera: methods used and their merits. Dev. Biol. Stand. 99: 51-59
  18. Jeong, H.-S., J,-H. Shin, Y.-N. Park, J.-Y. Choi, Y.-L. Kim, B.-G. Kim, S.-R. Ryu, S.-Y. Baek, S.-H. Lee, and S.-N. Park. 2003. Development of real-time RT-PCR for evaluation of JEV clearance during purification of HPV type 16 L1 virus-like particles. Biologicals 31: 223-229 https://doi.org/10.1016/S1045-1056(03)00064-2
  19. Kil, T. G., W. J. Kim, D. H. Lee, Y. Kang, H. M. Sung, S. H. Yoo, S.-N. Park, and I. S. Kim. 2005. Quantitative real-time PCR of porcine parvovirus as a model virus for cleaning validation of chromatography during manufacture of plasma derivatives. Kor. J. Microbiol. 41: 216-224
  20. Lee, D. H., H. M. Cho, H. M. Kim, J. Lee, and I. S. Kim. 2008. Real-time PCR for validation of minute virus of mice safety during the manufacture of mammalian cell culture-derived biopharmaceuticals. Kor. J. Microbiol. Biotechnol. 36: 12-20
  21. Lee, D. H., H. S. Jeong, J. H. Lee, T. E. Kim, J. Lee, and I. S. Kim. 2008. Real-time PCR for quantitative detection of bovine herpesvirus type 1. Kor. J. Microbiol. 44: 14-21
  22. Merten, O.-W. 2002. Virus contamination of cell cultures-a biotechnological view. Cytotechnol. 39: 91-116 https://doi.org/10.1023/A:1022969101804
  23. Parkman, P. D. 1996. Safety of biopharmaceuticals: a current perspective. Dev. Biol. Stand. 88: 5-7
  24. Rudnick, A. 2006. Advances in tissue engineering and use of type 1 bovine collagen particles in wound bed preparation. J. Wound Care 15: 402-404 https://doi.org/10.12968/jowc.2006.15.9.26962
  25. Ryu, S.-R., J.-H. Shin, S.-Y. Baek, J.-O. Kim, K.-I. Min, B.- S. Min, B.-G. Kim, D.-K. Kim, M.-K. Park, M.-J. Ahn, K.- S. Chae, H.-S. Jeong, S.-H. Lee, and S.-N. Park. 2003. Evaluation of limit of detection and range of quantitation for RT-PCR, real-time RT-PCR and RT-PCR-ELISA detection of bovine viral diarrhea virus contamination in biologics derived from cell cultures. J. Bacteriol. Virol. 33: 161-168
  26. Sandals, W. C. D., R. C. Povey, and A. H. Meek. 1995. Prevalence of bovine parvovirus infection in Ontario dairy cattle. Can. J. Vet. Res. 59: 81-86
  27. Schneider, G. 2003. Bioimplants-characteristics and use. Laryngorhinootologie 82: 839-852 https://doi.org/10.1055/s-2004-814134
  28. Storz, J. and R. C. Bates. 1973. Parvovirus infection in calves. J. Am. Vet. Med. Assoc. 163: 884-886
  29. Storz, J., S. Young, E. J. Carroll, R. C. Bates, R. A. Bowen, and D. A. Keney. 1978. Parvovirus infection of the bovine fetus: Distribution of infection, antibody response, and agerelated susceptibility. Am. J. Vet. Res. 39: 1099-1102
  30. Watzinger, F., K. Ebner, and T. Lion. 2006. Detection and monitoring of virus infections by real-time PCR. Mol. Aspects Med. 27: 254-298 https://doi.org/10.1016/j.mam.2005.12.001
  31. Yarlagadda, P. K., M. Chandrasekharan, and J. Y. Shyan. 2005. Recent advances and current developments in tissue scaffolding. Biomed. Mater. Eng. 15: 159-177