Effect of Methyl tert-Butyl Ether and Its Metabolites on Microbial Activity and Diversity in Tidal Mud Flat

갯벌 미생물 활성 및 다양성에 미치는 Methyl tert-Butyl Ether(MTBE)와 MTBE 대사산물의 영향

  • Cho, Won-Sil (Department of Environmental Science & Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science & Engineering, Ewha Womans University)
  • 조원실 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Published : 2008.12.28

Abstract

The effect of methyl tert-butyl ether (MTBE) and its metabolites like tert-butyl alcohol (TBA), and formaldehyde (FA) on microbial activity and diversity in tidal mud flat was studied. MTBE, TBA, and FA with different concentrations were added into microcosms containing tidal mud samples, and placed at room temperature for 30 days. Then the physico-chemical properties such as pH, moisture contents and organic matter contents in the microcosms were measured. In addition, the total viable cell number and dehydrogenase activity were measured. Bacterial communities in the microcosms were monitored using a 16S rRNA-PCR-DGGE (Denaturing gradient gel electrophoresis) fingerprinting method. As a result, the exposure concentrations of MTBE and its metabolites showed no correlation with the physico-chemical factors (P>0.05). Dehydrogenase activity and total viable cell number were decreased with increasing MTBE, TBA and FA concentrations (P<0.05). The toxic effect was higher the following order: FA > MTBE > TBA. Dominant species in the microcosms contaminated with MTBE and its metabolites were Sphingobacteria, Flavobacteria, delta-proteobacteria, gamma-proteobacteria. The diversity of bacterial community was not significantly influenced by MTBE and its metabolites.

갯벌 토양 내 미생물 군집에 미치는 methyl tert-butyl ether(MTBE)와 그의 대사산물인 tert-butyl alcohol(TBA) and formaldehyde(FA)의 영향을 조사하였다. 서로 다른 농도의 MTBE, TBA 및 FA를 갯벌 토양 microcosm에 첨가한 후 30일 간 실온에 방치했다. Microcosm 시료의 pH, 수분함량, 유기물 함량 등의 물리 화학적 특성을 측정하였다. 총 세균수와 탈수소 효소 활성변화를 측정하였고, 미생물 군집 구조는 16S rRNA-PCR-DGGE(Denaturing gradient gel electrophoresis) fingerprinting 기법을 이용해 모니터링 했다. 그 결과, MTBE, TBA 및 FA 첨가 농도와 물리 화학적 요인들 사이에는 상관관계가 없었다(P>0.05). 탈수소효소 활성과 총 세균수는 MTBE, TBA 및 FA 농도가 증가 될수록 감소하였다(P<0.05). 각각의 독성 물질들이 미생물 활성에 저해 영향을 주었으며 이들의 저해 정도는 FA > MTBE > TBA 순이었다. MTBE, TBA 및 FA 노출 후 군집의 우점종을 살펴 본 결과 Sphingobacteria, Flavobacteria, delta-proteobacteria, gamma-proteobacteria로 크게 네 그룹으로 이뤄졌다. 미생물 군집의 다양성 지수는 MTBE및 대사산물의 주입농도의 영향을 받지 않았다.

Keywords

References

  1. Barbara, M. K. and S. Bozena. 2003. Habitat functions of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ. Int. 28: 719-728 https://doi.org/10.1016/S0160-4120(02)00117-4
  2. Bark, C. and S. Lee. 2004. Environmental considerations on the function and value of tidal wetland. Environ. Impact Assess. 13: 87-101
  3. Chisala, B. N., N. G. Tait, and D.N. Lerner. 2007. Evaluation the risks of Methyl tert-butyl Ether (MTBE) pollution of urban groundwater. J. Contam. Hydrol. 91: 128-145 https://doi.org/10.1016/j.jconhyd.2006.08.013
  4. Cho, W. S., E. H. Lee, E. H. Shim, J. S. Kim. H. W. Ryu, and K. S. Cho. 2005. Bacterial communities of biofilm sampled from seepage groundwater contaminated with petroleum oil. J. Microbial. Biotechnol. 15: 952-964
  5. Hong, S. H., H. L. Park, W. Ko, J. J. Yoo, and K. S. Cho. 2007. Bioremediation of oil-contaminated soil using an oildegrading rhizobacterium Rhodococcus sp. 412 and Zea mays. Kor. J. Microbial. Biotechnol. 35: 150-157
  6. Jung, S.S.Y. 2004. Study on adsorption and diffusion transport of MTBE(Methyl tertiary butyl ether) into the soil, Pusan National University, Master thesis
  7. Kang, D., J. Nam, and S. Lee. 2006. Emergy valuation of a tidal flat ecosystem in the southwestern coast of Korea and Its Comparison with valuations using economic methodologies. Kor. J. Environ. Sci. 15: 243-252 https://doi.org/10.5322/JES.2006.15.3.243
  8. Katayama, Y., I. Y. Chung, and K. J. Cho. 2003. Effect of spilled oil on microbial communities in a tidal flat. Mar. Pollut. Bull. 47: 85-90 https://doi.org/10.1016/S0025-326X(03)00103-6
  9. Kern, E. A, R. H. Veeh, H. W. Langner, R. E. Macur, and A. B. Cunningham. 2003. Characterization of methyl tert-butyl ether-degrading bacteria from a gasoline-contaminated aquifer. J. Bioremed. 6: 113-124
  10. Lee, H. Y. 2003. Studies on the distribution of the microalgae in the tidal flats of Gagami beach, Young-Gwang, Korea. Kor. J. Environ. Sci. 12: 715-724 https://doi.org/10.5322/JES.2003.12.7.715
  11. Nahar, M. S., P. S. Grewal, S. A. Miller, D. Stinner, B. R. Stinner, M. D. Kleinhenz, and D. Doohan. 2006. Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Appl. Soil Ecol. 34: 140-151 https://doi.org/10.1016/j.apsoil.2006.03.011
  12. Natalya, I., S. Jorgen, and P. l. Valter. 2003. Effect of heavy metals and PAH on soil assessed via dehydrogenase assay. Environm. Int. 28: 779-782
  13. Ramsech, C. S. and J. S. Rawat. 2008. Monitoring of aquatic macroinvertebrates as bioindicator for assessing the health of wetlands: A case study in the central Himalayas, India, Ecol. Indicat. 9: 118-128 https://doi.org/10.1016/j.ecolind.2008.02.004
  14. Rossner, A. and D. R. U. Knappe. 2008. MTBE adsorption on alternative adsorbents and packed bed adsorb performance. Water. Res. 42: 2287-2299 https://doi.org/10.1016/j.watres.2007.12.009
  15. Santos, F. S., J. Hermandez-Allica, J. M. Becerril, N. Amaral- Sobrinho, N. Mazur, and C. Garbisu. 2006. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65: 43-50 https://doi.org/10.1016/j.chemosphere.2006.03.012
  16. Schinner, F. A., R. Niederbacher, and I. Neuwinger. 1980. Compound fertilizer and cupric sulfate on soil enzymes and $CO_2-evaluation$. Plant Soil. 57: 85-93 https://doi.org/10.1007/BF02139644
  17. Schmidt, T. C., M. Schirmer, H. Weib, and S. B. Haderlein. 2004. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface. J. Contam. Hydrol. 70: 173-203 https://doi.org/10.1016/j.jconhyd.2003.09.001
  18. Scholz, M., M. Xu, and K. Jing. 2002. Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper. Biore. Technol. 83: 71-79 https://doi.org/10.1016/S0960-8524(01)00210-3
  19. Shen, G., Y. Lu, Q. Zhou, and J. Hong. 2005. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme. Chemosphere 61: 1175-1182 https://doi.org/10.1016/j.chemosphere.2005.02.074