효모 세포 표면 발현된 Endoxylanase를 이용한 Xylooligosaccharides의 생산

Production of Xylooligosaccharides by Yeast Cell Surface-Displayed Endoxylanase

  • 김현진 (동의대학교 바이오물질제어학과) ;
  • 이재형 (동의대학교 바이오물질제어학과) ;
  • 김연희 (동의대학교 바이오물질제어학과) ;
  • 남수완 (동의대학교 바이오물질제어학과)
  • Kim, Hyun-Jin (Department of Biomaterial Control, Dong-Eui University) ;
  • Lee, Jae-Hyung (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Yeon-Hee (Department of Biomaterial Control, Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
  • 발행 : 2008.12.28

초록

Bacillus sp. endoxylanase 유전자(xynB, 642 bp)의 효모 표면발현계 pCTXYN(6.8 kb)를 구축하고 Saccharomyces cerevisiae EBY100에 형질전환시켜 형질전환체 EBY100/pCTXYN를 얻었다. 형질전환체들을 xylan이 포함된 YPDG 배지에서 배양 후 활성염색을 통하여 고찰성의 형질전환체를 최종 선별하였다. 갈락토스 배지에서 자란 효모 형질전환체로부터 xynB는 성공적으로 표면발현되었고, xylan으로 부터 xylooligosaccharides를 효율적으로 생성함도 화인하였다. Endoxylanase 활성은 세포분획에서만 검출되었고 배양 48시간에 최종 1.9 unit/mL의 활성을 보였다. Xylooligosaccharides 생산을 위한 치적 반응 조건으로, 기질과 농도는 oat spelt xylan 6%, 효모 생촉매 농도는 5 unit/mL, 반응온도는 $50^{\circ}C$, 반응시간은 $2{\sim}4$시간이었다 효모 생촉매를 oat spelt xylan과 corncob xylan에 처리한 결과, xylotriose가 주성분이었다.

The yeast surface expression system, pCTXYN (6.8 kb), of Bacillus endoxylanase gene (xynB, 642 bp) was constructed and introduced into Saccharomyces cerevisiae EBY100 cell. The transformed yeast cell showing the highest endoxylanase activity was selected through the active staining of colonies grown on YPDG medium containing xylan. With the yeast transformant, EBY100/pCTXYN, grown on galactose containing medium, it was found that the endoxylanase was successfully displayed on the yeast cell surface and the xylooligosaccharides were efficiently produced from xylan. The most of endoxylanase activity was detected in the cell fraction and reached about 1.9 unit/mL after 48 h cultivation. The optimized conditions for xylooligosaccharides production from xylan were determined as follows: substrate and its concentration, oat spelt xylan 6%; concentration of yeast whole-cell, 5 unit/mL; temperature, $50^{\circ}C$, and reaction time $2{\sim}4\;h$. When the oat spelts xylan and corncob xylan were hydrolyzed by treatment with cell surface-displayed endoxylanase, xylotriose was formed as a main product.

키워드

참고문헌

  1. Andres, I., O. Gallardo, P. Parascandola, F. I. Javier Pastor, and J. Zueco. 2005. Use of the cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp. BP-7 xylanase A in Saccharomyces cerevisiae. Biotechnol. Bioeng. 89: 690-697 https://doi.org/10.1002/bit.20375
  2. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: review. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
  3. Berrin, J.G., G. Williamson, A. Puigserver, J. C. Chaix, W. R. McLauchlan, and N. Juge. 2000. High-level production of recombinant fungal $endo-{\beta}-1,4-xylanase$ in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 19: 179-187 https://doi.org/10.1006/prep.2000.1229
  4. Cochran, J. R., Y. S. Kim, M. J. Olsen, R. Bhandari, and K. D. Wittrup. 2004. Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J. Immunol. Methods. 287: 147-158 https://doi.org/10.1016/j.jim.2004.01.024
  5. Damaso, M. C., M. S. Almeida, E. Kurtenbach, O. B. Martins, N. Jr. Pereira, C. M. Andrade, and R. M. Albano. 2003. Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl. Environ. Microbiol. 69: 6064-6072 https://doi.org/10.1128/AEM.69.10.6064-6072.2003
  6. Fujita, Y., S. Katahira, M. Ueda, A. Tanaka, H. Okada, Y. Morikawa, H. Fukuda, and A. Kondo. 2002. Construction of whole-cell biocatalyst for xylan degradation through cellsurface xylanase display in Saccharomyces cerevisiae. J. Mol. Catal. B: Enzym. 17: 189-195 https://doi.org/10.1016/S1381-1177(02)00027-9
  7. Gorgens, J. F., J. Planas, W. H. van Zyl, J. H. Knoetze, and B. Hahn-Hägerdal. 2004. Comparison of three expression systems for heterologous xylanase production by S. cerevisiae in defined medium. Yeast. 21: 1205-1217 https://doi.org/10.1002/yea.1175
  8. Heo, S. Y., J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and ${\beta}-xylosidase$ expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
  9. Katahira, S., Y. Fujita, A. Mizuike, H. Fukuda, and A. Kondo. 2004. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 70: 5407-5414 https://doi.org/10.1128/AEM.70.9.5407-5414.2004
  10. Kato, M., J. Fuchimoto, T. Tanino, A. Kondo, H. Fukuda, and M. Ueda. 2007. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Appl. Microbiol. Biotechnol. 75: 549-555 https://doi.org/10.1007/s00253-006-0835-2
  11. Kim, K. Y., M. D. Kim, N. S. Han, and J. H. Seo. 2002. Display of Bacillus maceranscyclodextrin glucanotransferase on cell surface of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 12: 411-416
  12. Kim, Y. H., S. Y. Heo, M. J. Kim, J. H. Lee, Y. M. Kim, and S. W. Nam. 2008. Optimal production of xylooligosac-charide by using recombinant endoxylanase from Bacillus subtilis. J. Life Sci. 18: 52-57 https://doi.org/10.5352/JLS.2008.18.1.052
  13. Kondo, A. and M. Ueda. 2004. Yeast cell-surface displayapplications of molecular display. Appl. Microbiol. Biotechnol. 64: 28-40 https://doi.org/10.1007/s00253-003-1492-3
  14. La Grange, D. C., I. S. Pretorius, and W. H. van Zyl. 1996. Expression of a Trichoderma reesei ${\beta}-xylanase$ gene (XYN2) in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 62: 1036-1044
  15. La Grange, D. C., M. Claeyssens, I. S. Pretorius, and W. H. van Zyl. 2000. Coexpression of the Bacillus pumilus ${\beta}-xylosidase$ (xynB) gene with the Trichoderma reesei ${\beta}-xylanase$ 2 (xyn2) gene in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 54: 195-200 https://doi.org/10.1007/s002530000372
  16. La Grange, D. C., I. S. Pretorius, M. Claeyssens, and W. H. van Zyl. 2001. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger ${\beta}-xylosidase$ (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl. Environ. Microbiol. 67: 5512-5519 https://doi.org/10.1128/AEM.67.12.5512-5519.2001
  17. Lee, J. H., M. Y. Lim, M. J. Kim, S. Y. Heo, J. H. Seo, Y. H. Kim, and S. W. Nam. 2007. Constitutive coexpression of Bacillus endoxylanase and Trichoderma endoglucanase Genes in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 17: 2076-2080
  18. Li, X. L. and L. G. Ljungdahl. 1996. Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from, Saccharomyces cerevisiae. Appl. Environ. Microbiol. 62: 209-213
  19. Lipke, P. N. and J. Kurjan. 1992. Sexual agglutination in budding yeasts: Structure, function and regulation of adhesion glycoproteins. Microbiol. Rev. 56: 180-194
  20. Liu, M. Q. and G. F. Liu. 2008. Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Protein Expr. Purif. 57: 101-107 https://doi.org/10.1016/j.pep.2007.10.020
  21. Liu, M. Q., X. Y. Weng, and J. Y. Sun. 2006. Expression of recombinant Aspergillus niger xylanase A in Pichia pastoris and its action on xylan. Protein Expr. Purif. 48: 292-299 https://doi.org/10.1016/j.pep.2006.04.007
  22. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  23. Moure, A., P. Gullon, H. Dominiguez, and J. C. Parajo. 2006. Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Proc. Biochem. 41: 1913-1923 https://doi.org/10.1016/j.procbio.2006.05.011
  24. Nabarlatz, D., D. Montane, A. Kardosova, S. Bekesova, V. Hribalova, and A. Ebringerova. 2007. Almond shell xylooligosaccharides exhibiting immunostimulatory activity. Carbohydr. Res. 342: 1122-1128 https://doi.org/10.1016/j.carres.2007.02.017
  25. Nuyens, F., W. H. van Zyl, D. Iserentant, H. Verachtert, and C. Michiels. 2001. Heterologous expression of the Bacillus pumilus $endo-{\beta}-xylanase$ (xynA) gene in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 56: 431-434 https://doi.org/10.1007/s002530100670
  26. Polizeli, M. L. T. M.,, A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
  27. Reilly, P. J. 1981. Xylanase; structure and function. Basic Life Sci. 18: 111-129
  28. Shiraga, S., M. Kawakami, M. Ishiguro, and M. Ueda. 2005. Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a wholecell biocatalyst in organic solvents. Appl. Environ. Microbiol. 71: 4335-4338 https://doi.org/10.1128/AEM.71.8.4335-4338.2005
  29. Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64 https://doi.org/10.1080/07388550290789450
  30. Ueda, M. and A. Tanaka. 2000. Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J. Biosci. Bioeng. 90: 125-136
  31. Vazquez, M. J., J. L. Alonso, H. Dominguez, and J. C. Parajo. 2000. Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol. 11: 387-393 https://doi.org/10.1016/S0924-2244(01)00031-0
  32. Walsh, D. J. and P. L. Bergquist. 1997. Expression and secretion of a thermostable bacterial xylanase in Kluyveromyces lactis. Appl. Environ. Microbiol. 63: 3297-3300
  33. Walsh, D. J., M. D. Gibbs, and P. L. Bergquist. 1998. Expression and secretion of a xylanase from the extreme thermophile, thermotoga strain FjSS3B.1, in Kluyveromyces lactis. Extremophiles. 2: 9-14 https://doi.org/10.1007/s007920050037
  34. Wamalwa, B. M., G. Zhao, M. Sakka, P. M. Shiundu, T. Kimura, and K. Sakka. 2007. High-level heterologous expression of Bacillus halodurans putative xylanase xyn11a (BH0899) in Kluyveromyces lactis. Biosci. Biotechnol. Biochem. 71: 688-693 https://doi.org/10.1271/bbb.60477
  35. Washida, M., S. Takahachi, M. Ueda, and A. Tanaka. 2001. Spacer-mediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 56: 681-686 https://doi.org/10.1007/s002530100718
  36. Zhang, G. M., J. Huang, G. R. Huang, L. X. Ma, and X. E. Zhang. 2007. Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumerina. Appl. Microbiol. Biotechnol. 74: 339-346 https://doi.org/10.1007/s00253-006-0648-3