DOI QR코드

DOI QR Code

Benthic Foraminiferal Assemblage and Sedimentary Environment of Core Sediments from the Northern Shelf of the East China Sea

북동중국해 대륙붕 코아 퇴적물의 저서유공충 군집 특성과 퇴적환경 연구

  • Kang, So-Ra (South Sea Institute, Korea Ocean Research and Development Institute) ;
  • Lim, Dhong-Il (South Sea Institute, Korea Ocean Research and Development Institute) ;
  • Kim, So-Young (South Sea Institute, Korea Ocean Research and Development Institute) ;
  • Rho, Kyoung-Chan (South Sea Institute, Korea Ocean Research and Development Institute) ;
  • Yoo, Hae-Soo (Deep-sea and Marine Georesources Research Department Korea Ocean Research and Development Institute) ;
  • Jung, Hoi-Soo (Deep-sea and Marine Georesources Research Department Korea Ocean Research and Development Institute)
  • 강소라 (한국해양연구원 남해특성연구부) ;
  • 임동일 (한국해양연구원 남해특성연구부) ;
  • 김소영 (한국해양연구원 남해특성연구부) ;
  • 노경찬 (한국해양연구원 남해특성연구부) ;
  • 유해수 (한국해양연구원 심해.해저자원연구부) ;
  • 정회수 (한국해양연구원 심해.해저자원연구부)
  • Published : 2008.10.30

Abstract

Benthic foraminiferal assemblage and AMS radiocarbon dating of core sediments from the northern shelf of the East China Sea were analyzed in order to understand the paleoenvironment and sedimentary environmental changes around the Korean marginal seas since the last glacial maximum (LGM). The core sediments, containing continuous records of the last 16,000 years, reveal a series of well-defined vertical changes in number of species (S), P/T ratio and species diversity (H) as well as foraminiferal assemblage. Such down-core variations display a sharp change at a core depth of approximately 240 cm, which corresponds to ca. 10,000 year B.P. The sediments of the lower part of the core (240${\sim}$560 cm, Zone I), including the well-developed tide-influenced sedimentary structures, are characterized by high abundances of Ammonia beccarii and Elphidium clavatum (s.l.) and low values in number of species, P/T ratio and diversity. These tide-influenced signatures and foraminiferal assemblage characters suggest that the sediments of Zone I were deposited in a coastal environment (water depths of 20${\sim}$30 m) such as tidal estuary with an influence of the paleo-rivers (e.g., old-Huanghe and Yangtze rivers) during the early phase of the sea-level rise (ca. 16,000 to 10,000 years) since the LGM. In contrast, the upper core sediments (0${\sim}$240 cm, Zone II) are characterized by abundant Eilohedra nipponica and Bolivina robusta with a minor contribution of A. ketienziensis angulata and B. marginata. and high values in number of species, P/T ratio and diversity. Based on relative abundance of these assemblage, Zone II can be divided into two subzones (IIa and IIb). Zone IIa is interpreted to be deposited under the inner-to-middle shelf environment during the marine transgression in the early Holocene (after ca. 9,000 yr B.P.) when sea level rapidly increased. The sediments of zone IIb most likely deposited after 6,000 yr B.P. under the outer shelf environment (80${\sim}$100 m water depth), which is similar to modem depositional environments. The muddy sediments of zone IIb were probably transported from the old-Huanghe and Yangtze Rivers during the late Holocene. We suggest that the present-day oceanographic conditions over the Yellow and the East China Seas have been established after ca. 7,000${\sim}$6,000 yr B.P. when the Kuroshio Current began to influence this area.

지난 최대빙하기 이후 형성된 대륙붕 퇴적체의 퇴적환경 변화를 연구하기 위해 동중국해 북부(북동중국해) 대륙붕에서 채취된 코아 퇴적물에 대한 탄소동위원소(AMS $^{14}C$) 연대측정과 함께 저서유공충 군집 변화를 분석하였다. 코아퇴적물은 최하부에서 약 16,000yr B.P.이며, 최상부 30cm에서는 약 3,000yr B.P.로 지난 최대빙하기에서 최근까지 순차적으로 발달한 퇴적충으로 구성된다. 코아 퇴적물에서 산출되는 저서유공충 분석 결과, 군집조성, 종수(S) 그리고 종다양도(H(S)) 등이 약 240cm를 기준으로 상부와 하부에서 뚜렷하게 구분된다. 퇴적물 깊이 240cm 이하의 하부 퇴적층(Zone I)에서는 Ammonia beccarii와 Elphidium clavatum (s.l.)이 우세하게 출현하며, 부유성 유공충 산출율(P/T ratio, 평균 22%)과 종수(평균 44), 다양도(평균 2.9) 등이 상대적으로 낮다. 이러한 저서유공층 군집 특성과 연대측정에 근거할 때 Zone I은 최대빙하기 이후 초기 해수면 상승 동안(16${\sim}$10ka) 수심 약 20${\sim}$30m 내외의 염하구 환경에서 퇴적된 것으로 해석된다. 한편 상부의 Zons II 퇴적층은 Eilohedra nipponica와 Bolivina robusta가 우점하며, 부유성 유공층 산출율(>40%)과 종수(>60) 둥이 크게 증가하는 경향을 보인다. Zone II는 유공충 군집 구성 특성에 따라 두 개의 구간(Zone IIa와 IIb)으로 세분되며, Zone IIa는 약 9,000 yr B.P. 이후 해수면이 빠르게 상승하는 현세 해침 동안 연구해역에 형성된 내-중대륙붕 환경에서, 그리고 Zone IIb는 약 6,000 yr B.P. 이후 해수면이 현재와 같은 수심 80m 내외의 외대륙붕 환경에서 퇴적된 것으로 해석된다. 결론적으로 코아 퇴적물의 저서유공충 군집 변화 특성은 최대빙하기 이후해수면 상승과 함께 형성된 대륙붕 퇴적체의 퇴적환경 변화를 잘 반영한다.

Keywords

References

  1. 우한준, 정갑식, 권수재, 추용식, 김효영, 박성민, 2000, 대산 유화학단지 주변의 저서성 유공충 분포 특성. 한국 고생물학회지, 16, 99-112
  2. 장순근, 이경신, 1983, 경기만조간대의 현생저서유공충과 그 의의. 지질학회지, 19, 169-189
  3. 장순근, 이경신, 1984, 아산만조간대의 현생저서유공충에 대한 연구. 지질학회지, 20, 171-188
  4. 최동림, 이태희, 유해수, 임동일, 허식, 김광희, 2005, 동중국해 북부대륙붕에 발달한 니질 퇴적체의 탄성파 연구. 자원환경지질, 38, 633-642
  5. Akimoto, K., 1990, Distribution of recent benthonic foraminiferal faunas in the Pacific off southwest Japan and around Hachijojima Island. The Science Reports of Tohoku University, 2nd series (Geology), 60, 139-223
  6. Alve, E. and Murray, J.W., 1994, Ecology and taphonomy of benthic foraminifera in a temperate mesotidal inlet. Journal of Foraminiferal Research, 24, 18-27 https://doi.org/10.2113/gsjfr.24.1.18
  7. Berne, S., Vagner, P., Guichard, F., Lericolais, G., Liu, Z., Trentesaux, A., Yin, P., and Yi, H.I., 2002, Pleistocene forced regressions and tidal sand ridges in the East China Sea. Marine Geology, 188, 293-315 https://doi.org/10.1016/S0025-3227(02)00446-2
  8. Cann, J.H., Belperio, A.P., Gostin, V.A., and Rice, R.L., 1993, Contemporary benthic foraminifera in Gulf St. Vincent, South Australia, and a refined Late Pleistocene sea level history. Australian Journal of Earth Science, 40, 197-211 https://doi.org/10.1080/08120099308728074
  9. Cearreta, A. and Murray, J.W., 1996, Holocene paleoenvironmental and relative sea-level changes in the Santona estuary, Spain. Journal of Foraminiferal Research, 26, 289-299 https://doi.org/10.2113/gsjfr.26.4.289
  10. Cheong, H.-K., 1989, A study on the benthic foraminifera from the tidal flats adjacent to inchon, Korea. Journal of Paleontological Society of Korea, 5, 39-52
  11. Demarest II, J.M. and Kraft, J.C., 1987, Stratigraphic record of Quaternary sea-levels: Implications for more ancient strata. In Nummedal, D., Pilkey, O.H., and Howard, J.D. (eds.), Sea-level fluctuation and coastal evolution. Society for Sedimentary Geology Special Publication, 41, 223-239
  12. Gibson, T.G. and Buzas, M.A., 1973, Species diversity: Patterns in modern and Miocene Foraminifera of the eastern margin of north America. Geological Society of America Bulletin, 84, 217-238 https://doi.org/10.1130/0016-7606(1973)84<217:SDPIMA>2.0.CO;2
  13. Hasegawa, S., 1979, Foraminifera of the Himi Group, Hokuriku Province, Central Japan. The Science Reports of Tohoku University, 2nd series (Geology), 49, 89-163
  14. Hazel, J., 1975, Patterns of marine ostracode diversity in the Cape Hatteras, North Carolina area. Journal of Paleontology, 49, 731-744
  15. Ishiwada, Y., 1964, Benthonic Foraminifera off the Pacific Coast of Japan referred to Biostratigraphy of the Kazusa group. Geological Survey of Japan, No. 205, 45p
  16. Jian, Z., Wang, P., Saito, Y., Wang, J., Pflaumann, U., Oba, T., and Cheng, X., 2000, Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letters, 184, 305-319 https://doi.org/10.1016/S0012-821X(00)00321-6
  17. Kaiho, K. and Hasegawa, S., 1986, Bathymetric distribution of benthic foraminifera in the bottom sediments off Onahama, Fukushima Prefecture, northeast Japan. In Matoba, Y. and Kato, M. (eds.), Studies on Cenozoic Benthic Foraminifera in Japan. Mining College, Akita University, Akita, Japan, 43-52
  18. Lee, Y.G., Chu, Y.S., Jung, K.K., Woo, H.J., and Lee, H.J., 2000, Depositional processes of fine-grained sediments and foraminiferal imprint of estuarine circulation by summer floods in Yoja Bay, southern coast of Korea. Journal of the Korean Society of Oceanography, 35, 109-123
  19. Li, B., Jian, Z., and Wang, P., 1997, Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20,000 years. Marine Micropaleontology, 32, 59-69 https://doi.org/10.1016/S0377-8398(97)00013-3
  20. Li, B., Park, B-K., and Kim, D., 1999, Paleoceanographic records from the northern shelf of the East China Sea since the Last Glacial Maximum. Journal of the Korean Society of Oceanography, 34, 151-166
  21. Lim, D.I., Choi, J.Y., Jung, H.S., Rho, K.C., and Ahn, K.S., 2007, Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas. Porgress in Oceanography, 73, 145-159 https://doi.org/10.1016/j.pocean.2007.02.004
  22. Liu, Z-X, Berne, S., Saito, Y., Lericolais, G, and Marsset, T., 2000, Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. Journal of Asian Earth Sciences, 18, 441-452 https://doi.org/10.1016/S1367-9120(99)00077-2
  23. Matoba, Y., 1970, Distribution of recent shallow water foraminifera of Matsushima Bay, Miyagi Prefecture, northeast Japan. The Science Reports of Tohoku University, 2nd series (Geology), 42, 1-85
  24. Matoba, Y., 1976, Foraminifera from off Noshiro, Japan, and postmortem destruction of tests in the Japan Sea. In Takayanagi, Y. and Saito, T. (eds.), Progress on micropaleontology. American Museum of National History, NY, USA, 169-189
  25. Matoba, Y. and Fukasawa, K., 1992, Depth Distribution of Recent Benthic Foraminifera on the Continental Shelf and Uppermost Slope off Southern Akita Prefecture, Northeast Japan (The Eastern Japan Sea). In Ishizaki, K. and Saito, T. (eds.), Centenary of Japanese Micropaleontology. Terra Scientific Publishing Company, Tokyo, Japan, 207-226
  26. Matoba, Y. and Honma, N., 1986, Depth distribution of recent benthic foraminifera off Nishitsugaru, eastern Sea of Japan. In Matoba, Y. and Kato, M. (eds.), Studies on Cenozoic Benthic Foraminifera in Japan. Mining College, Akita University, Akita, Japan, 53-78
  27. Murray, J.W., 1976, Comparative studies of living and dead benthic foraminiferal distribution. In Hedley, R.H. and Adams, C.G., (eds.), Foraminifera. 2, Academic Press, London, UK, 45-110
  28. Nomura, R. and Koji, S., 1992, Benthic foraminifera from brackish lake Nakanoumi, San-in district, southwestern Honshu, Japan. In Ishizaki, K. and Saito, T. (eds.), Centenary of Japanese Micropaleontology. Terra Scientific Publishing Company, Tokyo, Japan, 227-240
  29. Saito, Y., Katayama, H., Ikehara, K., Kato, Y., Matsumoto, E., Oguri, K., Oda, M., and Yumoto, M., 1998, Transgressive and highstand systems tracts and post-glacial transgression, the East China Sea. Sedimentary Geology, 122, 217-232 https://doi.org/10.1016/S0037-0738(98)00107-9
  30. Sen Gupta, B.K. and Kilbourne, R.T., 1974, Diversity of benthic foraminifera on the Georgia Continental Shelf. Geological Society of America Bulletin, 85, 696-972
  31. Shin, I.C., Yi, H.L., Shin, D.H., and Han, S.J., 1998, Foraminifera as the Holocene sea-level and paleoenvironmental indicators along the west coast of Korea. The Korean Journal of Quaternary Research, 12, 31-44
  32. Uchio, T., 1962, Influence of the river Shinano on foraminifera and sediment grain size distribution. Publication of Seto Marine Biological Laboratory, C10, 363-393
  33. Ujiie, H., Tanaka, Y., and Ono, T., 1991, Late Quaternary paleoceanographic record from the middle Ryukyu Trench slope, northwest Pacific. Marine Micropaleontology, 18, 115-128 https://doi.org/10.1016/0377-8398(91)90008-T
  34. Wang, P., 1992, Distribution of foraminifera in estuarine deposits: A comparison between Asia, Europe and Australia. In Ishizaki, K. and Saito, T. (eds.), Centenary of Japanese Micropaleontology. Terra Scientific Publishing Company, Tokyo, 71-83
  35. Wang, P., Jijun, Z., and Jianxi, G., 1985a, A close-up view of lowered seal-level microfauna from the East China and Huanghai Sea. In Bian, Y., Cheng, X., Gao, J., Hong, X., Hua, D., Li, Q., Min, Q., Wang, P., Xia, L., Zhang, J., Zhang, Q., Zhao, Q., Zheng, F. (eds.), Marine Micropaleontology of China. China Ocean Press, Beijing, China, 256-264
  36. Wang, P., Jijun, Z., and Qiubao, M., 1985b, Distribution of foraminifera in surface sediments of the East China Sea. In Bian, Y., Cheng, X., Gao, J., Hong, X., Hua, D., Li, Q., Min, Q., Wang, P., Xia, L., Zhang, J., Zhang, Q., Zhao, Q., Zheng, F. (eds.), Marine Micropaleontology of China. China Ocean Press, Beijing, China, 34-69
  37. Wang, P., Qiubao, M., and Jianxi, G., 1985c, A preliminary study of foraminiferal and ostracod assemblages in the Huanghai Sea. In Bian, Y., Cheng, X., Gao, J., Hong, X., Hua, D., Li, Q., Min, Q., Wang, P., Xia, L., Zhang, J., Zhang, Q., Zhao, Q., Zheng, F. (eds.), Marine Micropaleontology of China. China Ocean Press, Beijing, China, 115-132
  38. Wang, P., Qiubao, M., and Yunhua, B., 1985d, Distribution of foraminifera and ostracoda in bottom sediments of the northwestern part of the south Huanghai (Yellow) Sea and its geological significance. In Bian, Y., Cheng, X., Gao, J., Hong, X., Hua, D., Li, Q., Min, Q., Wang, P., Xia, L., Zhang, J., Zhang, Q., Zhao, Q., Zheng, F. (eds.), Marine Micropaleontology of China. China Ocean Press, Beijing, China, 93-114
  39. Xu, X. and Oda, M., 1999, Surface-water evolution of the eastern East China Sea during the last 36,000 years. Marine Geology, 156, 285-304 https://doi.org/10.1016/S0025-3227(98)00183-2
  40. Yoo, D.G., Lee, C.W., Kim, S.P., Jin, J.H., Kim, J.K., and Han, H.C., 2002, Late Quaternary transgressive and highstand systems tracts in the northern East China Sea mid-shelf. Marine Geology, 187, 313-328 https://doi.org/10.1016/S0025-3227(02)00384-5