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GENERALIZATION OF A TRANSFORMATION FORMULA
FOUND BY BAILLON AND BRUCK

Arjun K. Rathie and Yong Sup Kim

Abstract. We aim mainly at presenting a generalization of a trans-
formation formula found by Baillon and Bruck. The result is derived
with the help of the well-known quadratic transformation formula due to

Gauss.

1. Introduction

There was an open problem posed by Baillon and Bruck [1, Eq.(9.10)] who
needed to verify the following hypergeometric identity
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in order to derive a quantitative form of the Ishikawa-Edelstein-O’Brain asymp-
totic regularity theorem. Using Zeilberger’s algorithm [4], Baillon and Bruck
[1] gave a computer proof of this identity which is the key to the integral repre-
sentation [1, Eq.(2.1)] of their main theorem. In 1995, Paule [2] gave the proof
of (1.1) by using classical hypergeometric machinery by means of the following
contiguous relations:
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and the following well-known quadratic transformation formula [3] due to Gauss
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The aim of this short paper is to provide a generalization of (1.1) by em-
ploying the transformation formula (1.4).

2. Main result

The following a generalization of the result (1.1) will be established:
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3. Proof of (2.1)

In order to prove the main result (2.1), we proceed as follows. From (1.2),
we obtain the following relation:
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Multiplying both sides of (3.2) by (1 − y)−2a, we get
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Now it is easy to see that the two 2F1’s on the right hand side of (3.3) can be
evaluated with the help of the Gauss’ quadratic transformation formula (1.4),
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we get
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which can be written as
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Now, changing y to −y, we get
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Finally, taking y = 1−z
z and we, after a little simplification, have
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This completes the proof of (2.1).

4. Special case

In our main transformation formula (2.1), if we take a = −m and b = 1
2 , we

obtain
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Equation (4.1) is an alternate form of the result (1.1) due to Baillon and Bruck.

Remark. The result (1.1) in its exact form can be obtained from (4.1) by using
(1.3) with a = b = −m and c = 1.
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