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A NOTE ON THE VOLUME COMPARISON OF TUBES
AROUND GEODESICS

JONG-GUG YUN

ABSTRACT. In this paper, we shall calculate the volume of normal tubes
around geodesics under a curvature perturbation to establish a theorem
of volume comparison type.

1. Introduction

Let M be an n-dimensional Riemannian manifold with a submanifold N
of dimension k (< n). The normal tube of radius r around N is defined as
T(N,r) ={x € M | = expy(tv), where |t| < r and v € v(N)}. Here, v(N)
is the normal bundle of NV in M consisting of vectors perpendicular to N and
expy @ V(N) — M is the normal exponential map. Some formulas for the
volume of tubes around N, where N is a hypersurface or a point are studied
in [3], [10] and a new method was found for estimating the volume of tubes
around closed geodesics in [6].

When N is any geodesic v : [0,a] — M, it was also shown in [8] that
an analogue of the result of Heintz and Karcher [6] can be obtained in the
situation where one has LP-curvature bounds, which measure the quantities of
the sectional curvature lying below a given number A in the LP-norm. More
specifically, if f(z) is the smallest sectional curvature of a plane in T, M, then
we consider

K(\p) = / {max{—f(z) + A, 0}}¥dvol.
M
Indeed, in [8], the following theorem was obtained.

Theorem 1.1 ([8]). Let N C M be a geodesic and A < 0. Then the volume of
the normal tube around N satisfies volT(N,r) < F(n,p,a,b,c,r), where

a =1(N) = length of N,
b=\, c=K(\p), p>n—1.

Furthermore, as a, ¢ — 0 we have that F(n,p,a,b,c,r) — 0.
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In this paper, we shall show that if the sectional curvature Kj,; of M is
bounded below by a real number, then we obtain a comparison result anal-
ogous to the classical Bishop-Gromov volume comparison for the volumes of
tubes around a geodesic in M and in the standard sphere S™(1) with constant
curvature 1 by pinching K(1,p) for p > 1.

To state our main theorem more specifically, we need some notations as
following. Note first that using the fact that N is a geodesic we can use a
parallel frame along N to coordinatize the normal tubes T(N,r) as (s,t,0),
where s is the arclength parameter on N, ¢ measures the distance to N and
f € S"2(1) is the angular parameter from the unit normal bundle. Now write
the Riemannian volume element as

dvol = w(s,t,0)dt Ads A db,_a,

where df,,_, is the standard volume form on S™?(1). As t increases w may
become undefined but we can just define it to be zero for these ¢ for our purpose
to estimate the volume.

We also define J by J" 2 = w to obtain the initial conditions J(0) =
0, J'(0) = 1, where 7 denotes the differentiation with respect to t.

In case of the space form S™ (k) with constant curvature x € R, an immediate
calculation (refer to Lemma 2.2 and p. 39 in [2]) shows that the metric is given
by

g = C2(t)ds® + dt* + S2(t)db,, o,
where C(t) (resp. S.(t)) is the unique solution of the Jacobi equation for
constant curvature x, namely

2" (t) + kx(t) =0

with initial conditions 2(0) =1, 2’(0) = 0 (resp. z(0) =0, z'(0) = 1).

So in this case we have that

wi(t) = Cu(t)SET2(2).

Furthermore, if we let w’ = hw, then we obtain the differential inequality as

following (for details, refer to [10]).
h2
1 § *RiC(at,at).

n—

h +

Here, 0; is the unit gradient vector field for the distance function to N. We
know that h is the mean curvature of the level set of distance function to N.
It is also easy to check that for the case of S"(k), we have
Cl(t SI(t

L gy Selt)
Ci(t) Sk (t)

Now we are in a position to state our result as follows.

hi(t) =

Theorem 1.2. Let N be a given geodesic v : [0, a] — M and 0 < R < §

be given. We also assume that n > 2, K € R, 0 < r < R. Then for every



A NOTE ON THE VOLUME COMPARISON OF TUBES AROUND GEODESICS 579

€ > 0, there exists a 6 = 6(n, K, a,r, R,€) such that if M is an n-dimensional
Riemannian manifold with Ky; > k and K(1,p) <6, (p > 1), then we have
volT(N, R) < volT'(N, z)
volT(R) volT'(z)

for all z with r < z < R, where volT(r) is the volume of a normal r-tube around
a geodesic 7 : [0,a] — S™(1).

Remark 1.1. When compared with the similar results in [5], the curvature
condition in the above theorem has been weakened to a situation where one has
‘deep wells of sectional curvature’ below a positive real number by considering
the standard arguments for metric rescaling.

But it should still be pointed out that the above theorem holds only for
r > 0, so it is not the complete generalization of those results in [5].

2. Preliminaries

Note first that the smallness of L'-norm of the sectional curvature which
is bounded below implies the smallness of LP-norm of the curvature for any
p > 1. So without loss of generality, we may assume that p = 1 in Theorem 1.2
and for this reason, throughout this section we denote by M an n-dimensional
Riemannian manifold satisfying K (1,1) = [,, {max{1 — f(z), 0} }dvol < § and
Kj; > k for any real number x and a positive number 4.

We also let N and R > 0 be given as in the previous section and define, for
any n > 0, B, :={z € T(N, R)| max{l — f(z),0} > n}.

Note first that vol(E,) converges to zero as § — 0. This follows immediately
since

/ {max{1 — f(z), 0}}dvol > / {max{1 — f(z), 0}}dvol
M T(N,R)

>/ ndvol = nvol(E,).
E,
Now we let 1159 be the measure on exp., 4 t0 =: C; ¢(t) for each s (0 < s < a),

0 € S" %(1) and we define v > 0 so that w,(v) = /€, where ¢ = vol(E,)).
From now on, we proceed similar arguments as in [7] and define the explicit
quantities in our case as follows.

S\%ﬂ,(s, 0) =inf{c | ¢ > v,(s,0) € (D \41/;,,)67%,9(0&0([1/, d)NE,) > Vel
where
Dz, ={(s,0) €[0,a] x S"? | ps,9(Cs,0([v; R]) N Ey) < V/e}.

Then we obtain the similar lemma as in [7] which will be used later in Section 4
to estimate the volume of normal tubes.

Lemma 2.1. vol{exp, 0 | (5,0) € (P 4z ,)° Swe,(s,0) <t < R} converges
to zero as 6 — 0.
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The proof of this lemma basically follows the arguments in [7]. Let first

Ve = {(s.0) € @z | [ w(s,t,0)dt > V).
o(n,R)NE,

Since

e = vol(E,) = / ( / w(s, . 0)dt)dsdo
Sn=2x[0,a] J/Cs,0([0,R))NE

/ / (s,t,0)dt)dsdf
Cs.o(lv, R])OE

> \fvol(‘l’ Yew)

vol(V 4 ,,) converges to zero as § — 0.
Thus we may assume that for every (s,0) € (® 4z ,)°,

/ w(s,t,0)dt < /e.
Cs,0([v,R])NE,

We then know that there exists a d > v such that w(s,d,0) < /e and
ts.0(Cs0([v,d]) N Ey) < /e Of course, we know that d < Sy ,(s,0).

Furthermore, from the condition Kj; > k, it is easy to show the following
inequality using the standard arguments

/
Y

| /\

(s,

W
Thus we have for any ¢ with S 4 0) <t < Rand (s,0) € (®ac,),

w(s,t,0) < :j:((;))w(s,d, 0)
max{w,(r) | 0 <r < R}

wi (V) Ve
= max{w.(r) | 0 <r < R},

<

which converges to zero as § — 0. This completes our proof.

3. Mean curvature comparison

In this section, we compare the mean curvature h(s,t,6) in M with hq(t) in
S™(1). Recall that we have two assumptions on the curvature of M as follows:

Ky >k, /M {max{1 — f(x), 0}}dvol < &

for any real number x and a positive number 6.
We will use the same notations as in the previous section and provide the
comparison theorem as following.

Theorem 3.1. For any (s,0) € ® 4 ,,, we have h(s,r,0) < hi(r)+7(€) for all
r, R with0 <r < R < %, where 7(¢) — 0 as € — 0.
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We first take an orthonormal parallel vector fields {E;(¢)}?_, along Cj (¢)
such that E1(0) = C{ 4(0), E2(0) =1/(s).

Now we recall that by the standard theory of index form we have the fol-
lowing.

o ({68 (8 o (55 2]
+Z/ { /t (g((:))fK(Ei,cg,e(t))}dt
(n—2) { (t) S'(t ]rj

S(ry S(r
where S(t) = sm (VI=nt), C(t) =cos(v/T—nt).

Note that the rlght hand side of the above inequality can be rewritten as
follows (refer to p. 142 in [4]).

/OT ((é((t)) ) (1 —=n) = K(Ea, C{4(t)))dt

+Z / <S’(<: ) (1—n) — K(E;, CLy(t))dt

(228 vo-n 3854

We first observe that the third and fourth terms in the above sum turn into
hi—y(r) = (n = 2)y/T—ncot(yT =7 r) — T —=ntan(y/T =7 r).

By letting n as small as we please, we can express this as hy(r) + 7(n) (r <
R < %), where 7(n) converges to zero as 7 — 0.

Next, in the first and second terms in the above sum, we break the interval
[0,7] of integration into three parts as follows.

Cs0([0,7]) = Cs0([0,1]) U{Cs o([v, 7]) 0 By} U{Cs p([v, 7]) N E}.

First of all, note that (1 —n) — K(E;, C} 4(t)) < 0 on Csp([v,7]) N B} for
i =2,...,n. So the integration in this part is negative.

On Cs ([v,7]) N E;; on the other hand, we have (1 —n) — K(E;, C7 4(t)) <
1—n—rand ps9(Cs (v, R]) N E,) < /e. Thus we can say that

Cl(t) 2 - - /
/Cs,e([u,RhmE,,(C(r)) (1 =n) — K(E», Cyo(t)))dt

n S/(t) 2 ~ - | I B
+zz;/ e([uR])nEn(S(r)) (1 =mn) — K(E;, C p(t)))dt < 7(e),

0

where 7(e) — 0 as € — 0.
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Finally on C; 4([0,v]), we break it into Cs ([0, v]) N E;; and Cs »([0, v]) N E;
and apply the same arguments as on C; ¢([v,7]) N B, and Csg([v,7]) N Ef to
obtain the similar estimates noting that v can be chosen arbitrarily small as
€ — 0. Consequently, by putting all these estimates together, we conclude that
h(r,s,0) < h(r) + 7(e), which completes the proof.

4. Volume comparison

We finally estimate the volume of the normal tube around a geodesic in
our case and obtain a comparison theorem which is analogous to the classical
Bishop-Gromov volume comparison. Every notations in this section also follow
those in Section 2.

Recall first that we declared w(s,t,6) to be zero whenever it is undefined
since t goes too far from N.

Now let us analyze the volume of T'(V, R) as following.

Dy

R
/ w(s,t,0)dt | dsdb,_o
ye, \JO
5\4/;”(0,5)
(4.1) +/ / w(s,t,0)dt | dsdb,_o
(Cp%,y)c 0

R
—|—/ (/ w(s,tﬁ)dt) dsdf,,_o.
(®az.)° \VS4e,(0,9)

Here, note that the last term above can be written as £(d), which converges to
0 as § — 0 by Lemma 2.1.

By the same arguments as in the proof of Theorem 3.1, we can say that on
V= T, UW,, where

volT(N, R) = /

Uy ={(s,t,0) | (5,0) € Py,, 0 <t < R}
and
Uy ={(s,£,0) | (5,0) € (Pye.), 0<t < See,(0,9)},
we have
h(s,t,0) — hqi(t) < 7(€)

for some 7(€) > 0 where 7(¢) can be arbitrarily small as e — 0.

From this fact, a straightforward calculation of integration shows that

w(s,ts,0) w(s,t1,0)

4.2 ——— < exp(a(€)) ————=
(4.2) o (t2) p(a(e)) or ()
for any (s,t1,0), (s,t2,0) € U with ¢; < to, where a(e) converges to zero as
e — 0. Now we reproduce Lemma 2.1 in [9] to proceed our arguments and just
sketch the proof below.
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Lemma 4.1. Let f, g be two positive continuous functions defined on [0, c0].

If % < exp(a)% for some a > 0 and for all a, b with 0 < a < b, then for

any given R > 0, r > 0 and with R > r > 0 we have
R
Jo f®)dt _ Jy f(t)dt
R = Tz +
[ gydt ~ Jo 9(t)dt
forall z> 0 with R > z > r > 0 and for some 7(a) > 0 satisfying lirr%) T(a) =
o—
0.

(@)

It suffices to show that the function F(y) = g S(t)dt

= is almost nonincreasin,
JTg(hdt &

with respect to y € [r, R].
Specifically, we compute

y y

(4.3) Fy) < g(y?)J o 9(t)dt foyf(t)dt

(Jo g(®)dt)* [ g(t)dt
for all y with r <y < R.

Since the right hand of the above inequality tends to zero as a — 0, we can
express F'(y) < p(a) for some p(a) > 0 satisfying lim, o p(e) = 0. Then by
integrating this inequality from z to R, we get F(R) — F(z) < (R — z)u(a).
So if we let 7(«) := (R — z)pu(r) < Rp(ar), then we have F(R) < F(z) + 7(a),
which is our desired result.

For the v = a(e) in (4.2), we define yg so that [ wi(t)dt = \/a. Then from
(4.3) in the proof of the above Lemma 4.1 and (4.2), it is easy to check

Yodt exp(a) — 1
(ffg wldt> |yo§y§R < p(\/%C(k,n, R)’
0

which converges to zero as @ — 0. So we have

(exp(e) — 1)

fOR wdt - foz wdt

fOR widt foz widt

for all z with yo < z < R, where 7(a(€)) > 0 goes to zero as ¢ — 0.
From the above inequality, we can easily obtain the following.
(4.4)

Jo, (Jy wit) dsdo, Jo,., (Jy wdt) dsdt,
’ R = ' z + 7(ale))
Jsn-21)x 0.0 (fo Wldt) dsdfy 5 Jsn-2(yx(0,a (Jo widt) dsdfy

for all z with yg < z < R.
Next, we shall estimate the volume ratio for the case (s,t,6) € U5 in the

similar way. Note first that (® 4z ,)¢ can be divided into the following three
subsets:

+7((e))

(Pe,) = 1{(5,0) € (Dye,)° | Swew(s,0) <o < R},
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(%) =1{(5,0) € (P yz.) [ 0 < Syen(s,0) < R},
and
(@) ={(5,0) € (Pyer) | Yo < R < Sye,(s,0)}).
For the case (s,t,0) € ¥5 and (s,0) € (@%/Ey)c, we get obviously for all z

with yo < z < R that
S4 5
Jan, e (50 wdt) dsdt o fign o (Ji wdt) dsdb
VeE,v < e

fS"*Q(l)x [0,a] (fOR W1dt) dsd&n,g N fs"’Z(l)X[O,a] (foz Wldt) dsd&n,z ’

(s,0)

(4.5)

For the case (s,t,0) € ¥y and (s,0) € (‘IJQ%’—V)C, we use Lemma 4.1 and
obtain

Saz(5,0)
f(q;.z% V)C (fo ¥ Wdt) dsd@n_Q

R
(4.6) Jsn2(1)x[0.01 (fo wldt) dsdf,_»
Jia, e (Ji& wdt) dsdb,, —»
- fS"_Q(l)x[O,a] (fy widt) dsdf, o

for all z with yo < 2 < Sy, (s,0).
Furthermore, in case Sz ,(s,0) < 2z < R, we clearly have

S 4 €,V z
f(qﬂ%u)c (fo ¥z, wdt) dsdf,—o f(q)z%u)c (fy wdt) dsdf,_»

fS"*2(1)><[0,a] (fOR wldt) dean,Q B fSn72(1)X[07a] (foz wldt) de(gn,Q '

+ 7(a(e))

(s,0)

So we may say that (4.6) holds for any z with yg < z < R.
Finally, we obtain the similar estimate for the case (s,t,60) € ¥5 and (s,0) €
(<I’3\% )¢ using the same method as above. That is, we have

(4.7)
R z
f(@s%m)n (fo wdt) dsdf,, o f(q)g%’y)c (fo wdt) dsdf,_o

fS"*Q(l)X[O,a] (foR Wldt) dsdy_> fS“’Z(l)X[O,a] (foz wydt) dsdfy,—»

+ 7(a(e))

for any z with yo < 2z < R.
Now we put together all the above four inequalities (4.4)-(4.7) and recall
the analysis of volT (N, R) in (4.1), which gives the following inequality:
1T (N —&(6 1T (N
WIT(NF) —€) _woll(Vez) |
volT(R) volT'(2)
£(9)

volT(R)
please, (consequently, ¢ depends on a and R) then we can say that for every

If we choose a sufficiently small § > 0 so that can be as small as we
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€ > 0, there exists a § > 0 such that

volT (N, R) < volT(N, z)
volT(R) ~— wvolT(z)

for all z with yy < z < R. Since we can adjust yg so that yo < r by requiring o

to

be sufficiently small enough, we complete the proof of Theorem 1.2.
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