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A NOTE ON THE VOLUME COMPARISON OF TUBES
AROUND GEODESICS

Jong-Gug Yun

Abstract. In this paper, we shall calculate the volume of normal tubes
around geodesics under a curvature perturbation to establish a theorem
of volume comparison type.

1. Introduction

Let M be an n-dimensional Riemannian manifold with a submanifold N
of dimension k (< n). The normal tube of radius r around N is defined as
T (N, r) = {x ∈ M | x = expN (tv), where |t| < r and v ∈ ν(N)}. Here, ν(N)
is the normal bundle of N in M consisting of vectors perpendicular to N and
expN : ν(N) → M is the normal exponential map. Some formulas for the
volume of tubes around N, where N is a hypersurface or a point are studied
in [3], [10] and a new method was found for estimating the volume of tubes
around closed geodesics in [6].

When N is any geodesic γ : [0, a] → M, it was also shown in [8] that
an analogue of the result of Heintz and Karcher [6] can be obtained in the
situation where one has Lp-curvature bounds, which measure the quantities of
the sectional curvature lying below a given number λ in the Lp-norm. More
specifically, if f(x) is the smallest sectional curvature of a plane in TxM, then
we consider

K(λ, p) =
∫

M

{max{−f(x) + λ, 0}}p
dvol.

Indeed, in [8], the following theorem was obtained.

Theorem 1.1 ([8]). Let N ⊂ M be a geodesic and λ ≤ 0. Then the volume of
the normal tube around N satisfies volT (N, r) ≤ F (n, p, a, b, c, r), where

a = l(N) = length of N,

b = |λ|p, c = K(λ, p), p > n − 1.

Furthermore, as a, c → 0 we have that F (n, p, a, b, c, r) → 0.

Received May 8, 2007; Revised January 3, 2008.
2000 Mathematics Subject Classification. 53C20.

Key words and phrases. mean curvature, sectional curvature.

c⃝2008 The Korean Mathematical Society

577



578 JONG-GUG YUN

In this paper, we shall show that if the sectional curvature KM of M is
bounded below by a real number, then we obtain a comparison result anal-
ogous to the classical Bishop-Gromov volume comparison for the volumes of
tubes around a geodesic in M and in the standard sphere Sn(1) with constant
curvature 1 by pinching K(1, p) for p ≥ 1.

To state our main theorem more specifically, we need some notations as
following. Note first that using the fact that N is a geodesic we can use a
parallel frame along N to coordinatize the normal tubes T (N, r) as (s, t, θ),
where s is the arclength parameter on N, t measures the distance to N and
θ ∈ Sn−2(1) is the angular parameter from the unit normal bundle. Now write
the Riemannian volume element as

dvol = ω(s, t, θ)dt ∧ ds ∧ dθn−2,

where dθn−2 is the standard volume form on Sn−2(1). As t increases ω may
become undefined but we can just define it to be zero for these t for our purpose
to estimate the volume.

We also define J by Jn−2 = ω to obtain the initial conditions J(0) =
0, J ′(0) = 1, where ′ denotes the differentiation with respect to t.

In case of the space form Sn(κ) with constant curvature κ ∈ R, an immediate
calculation (refer to Lemma 2.2 and p. 39 in [2]) shows that the metric is given
by

g = C2
κ(t)ds2 + dt2 + S2

κ(t)dθn−2,

where Cκ(t) (resp. Sκ(t)) is the unique solution of the Jacobi equation for
constant curvature κ, namely

x′′(t) + κx(t) = 0

with initial conditions x(0) = 1, x′(0) = 0 (resp. x(0) = 0, x′(0) = 1).
So in this case we have that

ωκ(t) = Cκ(t)Sn−2
κ (t).

Furthermore, if we let ω′ = hω, then we obtain the differential inequality as
following (for details, refer to [10]).

h′ +
h2

n − 1
≤ −Ric(∂t, ∂t).

Here, ∂t is the unit gradient vector field for the distance function to N. We
know that h is the mean curvature of the level set of distance function to N.
It is also easy to check that for the case of Sn(κ), we have

hκ(t) =
C ′

κ(t)
Cκ(t)

+ (n − 2)
S′

κ(t)
Sκ(t)

.

Now we are in a position to state our result as follows.

Theorem 1.2. Let N be a given geodesic γ : [0, a] → M and 0 < R < π
2

be given. We also assume that n > 2, κ ∈ R, 0 < r < R. Then for every
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ϵ > 0, there exists a δ = δ(n, κ, a, r, R, ϵ) such that if M is an n-dimensional
Riemannian manifold with KM ≥ κ and K(1, p) < δ, (p ≥ 1), then we have

volT (N,R)
volT (R)

<
volT (N, z)
volT (z)

+ ϵ

for all z with r < z < R, where volT (r) is the volume of a normal r-tube around
a geodesic γ : [0, a] → Sn(1).

Remark 1.1. When compared with the similar results in [5], the curvature
condition in the above theorem has been weakened to a situation where one has
‘deep wells of sectional curvature’ below a positive real number by considering
the standard arguments for metric rescaling.

But it should still be pointed out that the above theorem holds only for
r > 0, so it is not the complete generalization of those results in [5].

2. Preliminaries

Note first that the smallness of L1-norm of the sectional curvature which
is bounded below implies the smallness of Lp-norm of the curvature for any
p ≥ 1. So without loss of generality, we may assume that p = 1 in Theorem 1.2
and for this reason, throughout this section we denote by M an n-dimensional
Riemannian manifold satisfying K(1, 1) =

∫
M

{max{1 − f(x), 0}}dvol < δ and
KM ≥ κ for any real number κ and a positive number δ.

We also let N and R > 0 be given as in the previous section and define, for
any η > 0, Eη := {x ∈ T (N,R)| max{1 − f(x), 0} > η}.

Note first that vol(Eη) converges to zero as δ → 0. This follows immediately
since ∫

M

{max{1 − f(x), 0}}dvol >

∫
T (N,R)

{max{1 − f(x), 0}}dvol

>

∫
Eη

ηdvol = ηvol(Eη).

Now we let µs,θ be the measure on expγ(s) tθ =: Cs,θ(t) for each s (0 ≤ s ≤ a),
θ ∈ Sn−2(1) and we define ν > 0 so that ωκ(ν) =

√
ϵ, where ϵ = vol(Eη).

From now on, we proceed similar arguments as in [7] and define the explicit
quantities in our case as follows.

S 4√ϵ,ν(s, θ) = inf{c | c > ν, (s, θ) ∈ (Φ 4√ϵ,ν)c, µs,θ(Cs,θ([ν, c]) ∩ Eη) ≥ 4
√

ϵ},
where

Φ 4√ϵ,ν = {(s, θ) ∈ [0, a] × Sn−2 | µs,θ(Cs,θ([ν,R]) ∩ Eη) < 4
√

ϵ}.
Then we obtain the similar lemma as in [7] which will be used later in Section 4
to estimate the volume of normal tubes.

Lemma 2.1. vol{expγ(s)tθ | (s, θ) ∈ (Φ 4√ϵ,ν)c, S 4√ϵ,ν(s, θ) ≤ t ≤ R} converges
to zero as δ → 0.
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The proof of this lemma basically follows the arguments in [7]. Let first

Ψ 4√ϵ,ν = {(s, θ) ∈ (Φ 4√ϵ,ν)c |
∫

Cs,θ([ν,R])∩Eη

ω(s, t, θ)dt ≥
√

ϵ}.

Since

ϵ = vol(Eη) =
∫

Sn−2×[0,a]

(
∫

Cs,θ([0,R])∩Eη

ω(s, t, θ)dt)dsdθ

≥
∫

Ψ 4√ϵ,ν

(
∫

Cs,θ([ν,R])∩Eη

ω(s, t, θ)dt)dsdθ

≥
√

ϵvol(Ψ 4√ϵ,ν),

vol(Ψ 4√ϵ,ν) converges to zero as δ → 0.
Thus we may assume that for every (s, θ) ∈ (Φ 4√ϵ,ν)c,∫

Cs,θ([ν,R])∩Eη

ω(s, t, θ)dt <
√

ϵ.

We then know that there exists a d > ν such that ω(s, d, θ) < 4
√

ϵ and
µs,θ(Cs,θ([ν, d]) ∩ Eη) ≤ 4

√
ϵ. Of course, we know that d ≤ S 4√ϵ,ν(s, θ).

Furthermore, from the condition KM ≥ κ, it is easy to show the following
inequality using the standard arguments.

ω′

ω
≤ ω′

κ

ωκ
.

Thus we have for any t with S 4√ϵ,ν(s, θ) ≤ t ≤ R and (s, θ) ∈ (Φ 4√ϵ,ν)c,

ω(s, t, θ) ≤ ωκ(t)
ωκ(d)

ω(s, d, θ)

≤ max{ωκ(r) | 0 ≤ r ≤ R}
ωκ(ν)

4
√

ϵ

= max{ωκ(r) | 0 ≤ r ≤ R} 8
√

ϵ,

which converges to zero as δ → 0. This completes our proof.

3. Mean curvature comparison

In this section, we compare the mean curvature h(s, t, θ) in M with h1(t) in
Sn(1). Recall that we have two assumptions on the curvature of M as follows:

KM ≥ κ,

∫
M

{max{1 − f(x), 0}}dvol < δ

for any real number κ and a positive number δ.
We will use the same notations as in the previous section and provide the

comparison theorem as following.

Theorem 3.1. For any (s, θ) ∈ Φ 4√ϵ,ν , we have h(s, r, θ) ≤ h1(r)+ τ(ϵ) for all
r, R with 0 ≤ r ≤ R < π

2 , where τ(ϵ) → 0 as ϵ → 0.



A NOTE ON THE VOLUME COMPARISON OF TUBES AROUND GEODESICS 581

We first take an orthonormal parallel vector fields {Ei(t)}n
i=1 along Cs,θ(t)

such that E1(0) = C ′
s,θ(0), E2(0) = γ′(s).

Now we recall that by the standard theory of index form we have the fol-
lowing.

h(s, r, θ) ≤
∫ r

0

{(
C ′(t)
C(r)

)2

−
(

C(t)
C(r)

)2

K(E2, C
′
s,θ(t))

}
dt −

[
C(t)
C(r)

· C ′(t)
C(r)

]r

0

+
n∑

i=3

∫ r

0

{(
S′(t)
S(r)

)2

−
(

S(t)
S(r)

)2

K(Ei, C
′
s,θ(t))

}
dt

− (n − 2)
[

S(t)
S(r)

· S′(t)
S(r)

]r

0

,

where S(t) = 1√
1−η

sin(
√

1 − η t), C(t) = cos(
√

1 − η t).
Note that the right hand side of the above inequality can be rewritten as

follows (refer to p. 142 in [4]).∫ r

0

(
C ′(t)
C(r)

)2

((1 − η) − K(E2, C
′
s,θ(t)))dt

+
n∑

i=3

∫ r

0

(
S′(t)
S(r)

)2

((1 − η) − K(Ei, C
′
s,θ(t)))dt

+
[

C(t)
C(r)

· C ′(t)
C(r)

]r

0

+ (n − 2)
[

S(t)
S(r)

· S′(t)
S(r)

]r

0

.

We first observe that the third and fourth terms in the above sum turn into
h1−η(r) = (n − 2)

√
1 − η cot(

√
1 − η r) −

√
1 − η tan(

√
1 − η r).

By letting η as small as we please, we can express this as h1(r) + τ(η) (r <
R < π

2 ), where τ(η) converges to zero as η → 0.
Next, in the first and second terms in the above sum, we break the interval

[0, r] of integration into three parts as follows.

Cs,θ([0, r]) = Cs,θ([0, ν]) ∪ {Cs,θ([ν, r]) ∩ Eη} ∪ {Cs,θ([ν, r]) ∩ Ec
η}.

First of all, note that (1 − η) − K(Ei, C
′
s,θ(t)) ≤ 0 on Cs,θ([ν, r]) ∩ Ec

η for
i = 2, . . . , n. So the integration in this part is negative.

On Cs,θ([ν, r]) ∩ Eη on the other hand, we have (1 − η) − K(Ei, C
′
s,θ(t)) ≤

1 − η − κ and µs,θ(Cs,θ([ν,R]) ∩ Eη) < 4
√

ϵ. Thus we can say that∫
Cs,θ([ν,R])∩Eη

(
C ′(t)
C(r)

)2

((1 − η) − K(E2, C
′
s,θ(t)))dt

+
n∑

i=3

∫
Cs,θ([ν,R])∩Eη

(
S′(t)
S(r)

)2

((1 − η) − K(Ei, C
′
s,θ(t)))dt ≤ τ(ϵ),

where τ(ϵ) → 0 as ϵ → 0.
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Finally on Cs,θ([0, ν]), we break it into Cs,θ([0, ν])∩Eη and Cs,θ([0, ν])∩Ec
η

and apply the same arguments as on Cs,θ([ν, r]) ∩ Eη and Cs,θ([ν, r]) ∩ Ec
η to

obtain the similar estimates noting that ν can be chosen arbitrarily small as
ϵ → 0. Consequently, by putting all these estimates together, we conclude that
h(r, s, θ) ≤ h(r) + τ(ϵ), which completes the proof.

4. Volume comparison

We finally estimate the volume of the normal tube around a geodesic in
our case and obtain a comparison theorem which is analogous to the classical
Bishop-Gromov volume comparison. Every notations in this section also follow
those in Section 2.

Recall first that we declared ω(s, t, θ) to be zero whenever it is undefined
since t goes too far from N.

Now let us analyze the volume of T (N,R) as following.

(4.1)

volT (N,R) =
∫

Φ 4√ϵ,ν

(∫ R

0

ω(s, t, θ)dt

)
dsdθn−2

+
∫

(Φ 4√ϵ,ν
)c

(∫ S 4√ϵ,ν
(θ,s)

0

ω(s, t, θ)dt

)
dsdθn−2

+
∫

(Φ 4√ϵ,ν
)c

(∫ R

S 4√ϵ,ν
(θ,s)

ω(s, t, θ)dt

)
dsdθn−2.

Here, note that the last term above can be written as ξ(δ), which converges to
0 as δ → 0 by Lemma 2.1.

By the same arguments as in the proof of Theorem 3.1, we can say that on
Ψ := Ψ1 ∪ Ψ2, where

Ψ1 = {(s, t, θ) | (s, θ) ∈ Φ 4√ϵ,ν , 0 ≤ t ≤ R}

and
Ψ2 = {(s, t, θ) | (s, θ) ∈ (Φ 4√ϵ,ν)c, 0 ≤ t ≤ S 4√ϵ,ν(θ, s)},

we have
h(s, t, θ) − h1(t) < τ(ϵ)

for some τ(ϵ) > 0 where τ(ϵ) can be arbitrarily small as ϵ → 0.
From this fact, a straightforward calculation of integration shows that

(4.2)
ω(s, t2, θ)

ω1(t2)
< exp(α(ϵ))

ω(s, t1, θ)
ω1(t1)

for any (s, t1, θ), (s, t2, θ) ∈ Ψ with t1 < t2, where α(ϵ) converges to zero as
ϵ → 0. Now we reproduce Lemma 2.1 in [9] to proceed our arguments and just
sketch the proof below.
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Lemma 4.1. Let f, g be two positive continuous functions defined on [0,∞].
If f(b)

g(b) ≤ exp(α) f(a)
g(a) for some α > 0 and for all a, b with 0 < a < b, then for

any given R > 0, r > 0 and with R > r > 0 we have∫ R

0
f(t)dt∫ R

0
g(t)dt

≤
∫ z

0
f(t)dt∫ z

0
g(t)dt

+ τ(α)

for all z > 0 with R ≥ z ≥ r > 0 and for some τ(α) > 0 satisfying lim
α→0

τ(α) =
0.

It suffices to show that the function F (y) =
R y
0 f(t)dt

R y
0 g(t)dt

is almost nonincreasing
with respect to y ∈ [r,R].

Specifically, we compute

(4.3) F ′(y) ≤
g(y)

∫ y

0
g(t)dt

(
∫ y

0
g(t)dt)2

∫ y

0
f(t)dt∫ y

0
g(t)dt

(exp(α) − 1)

for all y with r ≤ y ≤ R.
Since the right hand of the above inequality tends to zero as α → 0, we can

express F ′(y) ≤ µ(α) for some µ(α) > 0 satisfying limα→0 µ(α) = 0. Then by
integrating this inequality from z to R, we get F (R) − F (z) ≤ (R − z)µ(α).
So if we let τ(α) := (R − z)µ(α) < Rµ(α), then we have F (R) ≤ F (z) + τ(α),
which is our desired result.

For the α = α(ϵ) in (4.2), we define y0 so that
∫ y0

0
ω1(t)dt =

√
α. Then from

(4.3) in the proof of the above Lemma 4.1 and (4.2), it is easy to check( ∫ y

0
ωdt∫ y

0
ω1dt

)′

|y0≤y≤R ≤ exp(α) − 1√
α

C(k, n,R),

which converges to zero as α → 0. So we have∫ R

0
ωdt∫ R

0
ω1dt

≤
∫ z

0
ωdt∫ z

0
ω1dt

+ τ(α(ϵ))

for all z with y0 ≤ z ≤ R, where τ(α(ϵ)) > 0 goes to zero as ϵ → 0.
From the above inequality, we can easily obtain the following.

(4.4)∫
Φ 4√ϵ,ν

(∫ R

0
ωdt

)
dsdθn−2∫

Sn−2(1)×[0,a]

(∫ R

0
ω1dt

)
dsdθn−2

≤

∫
Φ 4√ϵ,ν

(∫ z

0
ωdt

)
dsdθn−2∫

Sn−2(1)×[0,a]

(∫ z

0
ω1dt

)
dsdθn−2

+ τ(α(ϵ))

for all z with y0 ≤ z ≤ R.
Next, we shall estimate the volume ratio for the case (s, t, θ) ∈ Ψ2 in the

similar way. Note first that (Φ 4√ϵ,ν)c can be divided into the following three
subsets:

(Φ1
4√ϵ,ν)c = {(s, θ) ∈ (Φ 4√ϵ,ν)c | S 4√ϵ,ν(s, θ) < y0 < R},
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(Φ2
4√ϵ,ν)c = {(s, θ) ∈ (Φ 4√ϵ,ν)c | y0 < S 4√ϵ,ν(s, θ) < R},

and
(Φ3

4√ϵ,ν)c = {(s, θ) ∈ (Φ 4√ϵ,ν)c | y0 < R < S 4√ϵ,ν(s, θ)}.

For the case (s, t, θ) ∈ Ψ2 and (s, θ) ∈ (Φ1
4√ϵ,ν

)c, we get obviously for all z

with y0 ≤ z ≤ R that

(4.5)

∫
(Φ1

4√ϵ,ν
)c

(∫ S 4√ϵ,ν
(s,θ)

0 ωdt
)

dsdθn−2∫
Sn−2(1)×[0,a]

(∫ R

0
ω1dt

)
dsdθn−2

≤

∫
(Φ1

4√ϵ,ν
)c

(∫ z

0
ωdt

)
dsdθn−2∫

Sn−2(1)×[0,a]

(∫ z

0
ω1dt

)
dsdθn−2

.

For the case (s, t, θ) ∈ Ψ2 and (s, θ) ∈ (Φ2
4√ϵ,ν)c, we use Lemma 4.1 and

obtain

(4.6)

∫
(Φ2

4√ϵ,ν
)c

(∫ S 4√ϵ,ν
(s,θ)

0 ωdt
)

dsdθn−2∫
Sn−2(1)×[0,a]

(∫ R

0
ω1dt

)
dsdθn−2

≤

∫
(Φ2

4√ϵ,ν
)c

(∫ z

0
ωdt

)
dsdθn−2∫

Sn−2(1)×[0,a]

(∫ z

0
ω1dt

)
dsdθn−2

+ τ(α(ϵ))

for all z with y0 ≤ z ≤ S 4√ϵ,ν(s, θ).
Furthermore, in case S 4√ϵ,ν(s, θ) < z ≤ R, we clearly have∫

(Φ2
4√ϵ,ν

)c

(∫ S 4√ϵ,ν
(s,θ)

0 ωdt
)

dsdθn−2∫
Sn−2(1)×[0,a]

(∫ R

0
ω1dt

)
dsdθn−2

≤

∫
(Φ2

4√ϵ,ν
)c

(∫ z

0
ωdt

)
dsdθn−2∫

Sn−2(1)×[0,a]

(∫ z

0
ω1dt

)
dsdθn−2

.

So we may say that (4.6) holds for any z with y0 ≤ z ≤ R.
Finally, we obtain the similar estimate for the case (s, t, θ) ∈ Ψ2 and (s, θ) ∈

(Φ3
4√ϵ,ν

)c using the same method as above. That is, we have
(4.7)∫

(Φ3
4√ϵ,ν

)c

(∫ R

0
ωdt

)
dsdθn−2∫

Sn−2(1)×[0,a]

(∫ R

0
ω1dt

)
dsdθn−2

≤

∫
(Φ3

4√ϵ,ν
)c

(∫ z

0
ωdt

)
dsdθn−2∫

Sn−2(1)×[0,a]

(∫ z

0
ω1dt

)
dsdθn−2

+ τ(α(ϵ))

for any z with y0 ≤ z ≤ R.
Now we put together all the above four inequalities (4.4)–(4.7) and recall

the analysis of volT (N,R) in (4.1), which gives the following inequality:

volT (N,R) − ξ(δ)
volT (R)

≤ volT (N, z)
volT (z)

+ τ(α(ϵ)).

If we choose a sufficiently small δ > 0 so that ξ(δ)

volT (R)
can be as small as we

please, (consequently, δ depends on a and R) then we can say that for every
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ϵ > 0, there exists a δ > 0 such that
volT (N,R)
volT (R)

≤ volT (N, z)
volT (z)

+ ϵ

for all z with y0 ≤ z ≤ R. Since we can adjust y0 so that y0 < r by requiring δ
to be sufficiently small enough, we complete the proof of Theorem 1.2.
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