HYERS-ULAM STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS

Jeongwook Chang and Jaeyoung Chung

Abstract

In this article we prove the Hyers-Ulam stability of trigonometric functional equations.

1. Introduction

In 1940, S. M. Ulam proposed the following problem [18]:
Let f be a mapping from a group G_{1} to a metric group G_{2} with metric d (\cdot, \cdot) such that

$$
d(f(x y), f(x) f(y)) \leq \varepsilon
$$

Then does there exist a group homomorphism L and $\delta_{\epsilon}>0$ such that

$$
d(f(x), L(x)) \leq \delta_{\epsilon}
$$

for all $x \in G_{1}$?
This problem was solved affirmatively by D. H. Hyers [11] under the assumption that G_{2} is a Banach space. In 1978, Th. M. Rassias [16] firstly generalized the above result and since then, stability problems of many other functional equations have been investigated $[4,5,6,7,8,9,12,13,14,15]$. In 1990, L. Székelyhidi [17] has developed his idea of using invariant subspaces of functions defined on a group or semigroup in connection with stability questions for sine and cosine functional equations. In this paper, employing the idea of L. Székelyhidi [17] we consider the Hyers-Ulam stability problem of the following two trigonometric functional equations

$$
\begin{align*}
& f(x-y)-f(x) g(y)+g(x) f(y)=0, \tag{1.1}\\
& g(x-y)-g(x) g(y)-f(x) f(y)=0, \tag{1.2}
\end{align*}
$$

Received June 4, 2008; Revised July 29, 2008.
2000 Mathematics Subject Classification. 39B82.
Key words and phrases. Hyers-Ulam stability, trigonometric functional equation.
The first author was supported by the Korean Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-C00025).

The second author was supported by the Korean Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-521C00016).
where $f, g: G \rightarrow \mathbb{C}$ and G is an abelian group divisible by 2 . We call A : $G \rightarrow \mathbb{C}$ additive provided that $A(x+y)=A(x)+A(y)$ for all $x, y \in G$ and call $m: G \rightarrow \mathbb{C}$ exponential provided that $m(x+y)=m(x) m(y)$ for all $x, y \in G$. We prove as results that if $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
|f(x-y)-f(x) g(y)+g(x) f(y)| \leq M
$$

for all $x, y \in G$, then f, g satisfy one of the followings:
(i) $f=0, \quad g$: arbitrary,
(ii) f and g are bounded functions,
(iii) $f(x)=A(x)+B(x)$ and $g(x)=\lambda A(x)+\mu B(x)+1$,
(iv) $f(x)=\frac{\lambda}{2}(m(x)-m(-x)), \quad g(x)=\frac{1}{2}(m(x)+m(-x))+\frac{\mu}{2}(m(x)-m(-x))$, where $\lambda, \mu \in \mathbb{C}, A$ is an additive function, m is an exponential function and B is a bounded function.

Also we prove that if $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
|f(x-y)-f(x) g(y)+g(x) f(y)| \leq M
$$

for all $x, y \in G$, then f, g satisfy one of the followings:
(i) f and g are bounded functions,
(ii) $f(x)=\frac{1}{2}(m(x)-m(-x)), g(x)=\frac{1}{2}(m(x)+m(-x))$, where m is an exponential function.

2. Stability of the equations

We first discuss the general solutions of the equations (1.1) and (1.2). We refer the reader to Aczél ([1], p. 180) and Aczél-Dombres ([2], pp. 209-217) for the proofs.

Lemma 2.1. Let G be an abelian group divisible by 2. Then the general solutions f, g of the equation (1.1) are given by

$$
\begin{aligned}
& f(x)=\frac{\lambda}{2}(m(x)-m(-x)), \\
& g(x)=\frac{1}{2}(m(x)+m(-x))+\frac{\mu}{2}(m(x)-m(-x)),
\end{aligned}
$$

or

$$
f(x)=A(x), g(x)=\lambda A(x)+1,
$$

and the nonconstant general solutions f, g of (1.2) are given by

$$
\begin{aligned}
& f(x)=\frac{1}{2}(m(x)-m(-x)) \\
& g(x)=\frac{1}{2}(m(x)+m(-x))
\end{aligned}
$$

where $\mu, \lambda \in \mathbb{C}, A$ is an additive function and m is an exponential function.

Lemma 2.2. Let $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality; there exists a positive constant M such that

$$
\begin{equation*}
|f(x-y)-f(x) g(y)+g(x) f(y)| \leq M \tag{2.1}
\end{equation*}
$$

for all $x, y \in G$. Then either there exist $\lambda, \nu \in \mathbb{C}$, not both zero, and $L>0$ such that

$$
\begin{equation*}
|\lambda f(x)-\nu g(x)| \leq L \tag{2.2}
\end{equation*}
$$

or else

$$
\begin{equation*}
f(x-y)-f(x) g(y)+g(x) f(y)=0 \tag{2.3}
\end{equation*}
$$

for all $x, y \in G$.
Proof. We prove that the equation (2.3) satisfied if the condition (2.2) fails. Assume that $|\lambda f(x)-\nu g(y)| \leq L$ for some $L>0$ implies $\lambda=\nu=0$. Let

$$
F(x, y)=f(x+y)-f(x) g(-y)+g(x) f(-y)
$$

Then we can choose y_{1} satisfying $f\left(-y_{1}\right) \neq 0$. It is easy to show that

$$
\begin{equation*}
g(x)=\lambda_{0} f(x)+\lambda_{1} f\left(x+y_{1}\right)-\lambda_{1} F\left(x, y_{1}\right), \tag{2.4}
\end{equation*}
$$

where $\lambda_{0}=\frac{g\left(-y_{1}\right)}{f\left(-y_{1}\right)}$ and $\lambda_{1}=-\frac{1}{f\left(-y_{1}\right)}$.
By the definition of F and the use of (2.4) we have

$$
\begin{aligned}
& f((x+y)+z) \\
= & f(x+y) g(-z)-g(x+y) f(-z)+F(x+y, z) \\
= & (f(x) g(-y)-g(x) f(-y)+F(x, y)) g(-z) \\
& -\left(\lambda_{0} f(x+y)+\lambda_{1} f\left(x+y+y_{1}\right)-\lambda_{1} F\left(x+y, y_{1}\right)\right) f(-z) \\
& +F(x+y, z) \\
= & (f(x) g(-y)-g(x) f(-y)+F(x, y)) g(-z) \\
& -\lambda_{0}(f(x) g(-y)-g(x) f(-y)+F(x, y)) f(-z) \\
& -\lambda_{1}\left(f(x) g\left(-y-y_{1}\right)-g(x) f\left(-y-y_{1}\right)+F\left(x, y+y_{1}\right)\right) f(-z) \\
& +\lambda_{1} F\left(x+y, y_{1}\right) f(-z)+F(x+y, z),
\end{aligned}
$$

and

$$
\begin{equation*}
f(x+(y+z))=f(x) g(-y-z)-g(x) f(-y-z)+F(x, y+z) . \tag{2.6}
\end{equation*}
$$

It follows from the equations (2.5) and (2.6),

$$
\begin{aligned}
& f(x)\left(g(-y) g(-z)-\lambda_{0} g(-y) f(-z)\right. \\
& \left.-\lambda_{1} g\left(-y-y_{1}\right) f(-z)-g(-y-z)\right) \\
& +g(x)\left(-f(-y) g(-z)+\lambda_{0} f(-y) f(-z)\right. \\
& \left.+\lambda_{1} f\left(-y-y_{1}\right) f(-z)+f(-y-z)\right) \\
= & -F(x, y) g(-z)+\lambda_{0} F(x, y) f(-z)+\lambda_{1} F\left(x, y+y_{1}\right) f(-z) \\
& -\lambda_{1} F\left(x+y, y_{1}\right) f(-z)-F(x+y, z)+F(x, y+z) .
\end{aligned}
$$

Since F is a bounded function, if we fix y, z the right hand side of the above equation is bounded function of x. Thus by the assumption that $\mid \lambda f(x)-$ $\nu g(y) \mid \leq L$ for some $L>0$ implies $\lambda=\nu=0$, the both sides of the above equation become zero. Consequently we have

$$
\begin{align*}
& \left|-F(x, y) g(-z)+\left(\lambda_{0} F(x, y)+\lambda_{1} F\left(x, y+y_{1}\right)-\lambda_{1} F\left(x+y, y_{1}\right)\right) f(-z)\right| \tag{2.7}\\
= & |F(x+y, z)-F(x, y+z)| \leq M .
\end{align*}
$$

Again by the assumption, we have $F(x, y) \equiv 0$. This completes the proof.
Theorem 2.3. Let $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality (2.1). Then f, g satisfy one of the followings:
(i) $f=0, \quad g$: arbitrary,
(ii) f and g are bounded functions,
(iii) $f(x)=A(x)+B(x)$ and $g(x)=\lambda A(x)+\mu B(x)+1$
(iv) $f(x)=\frac{\lambda}{2}(m(x)-m(-x)), \quad g(x)=\frac{1}{2}(m(x)+m(-x))+\frac{\mu}{2}(m(x)-m(-x))$, where $\lambda, \mu \in \mathbb{C}, A$ is an additive function, m is an exponential function and B is a bounded function.
Proof. First we assume that the inequality (2.2) holds. If $f=0, g$ is arbitrary which is the case (i). If f is a nontrivial bounded function, in view of (2.1) g is also bounded which is the case (ii). If f is unbounded, it follows from (2.2) that $\nu \neq 0$ and

$$
\begin{equation*}
g(x)=\mu f(x)+B(x) \tag{2.8}
\end{equation*}
$$

for some $\mu \in \mathbb{C}$ and a bounded function B. Putting (2.8) in (2.1) we have

$$
\begin{equation*}
|f(x-y)-f(x) B(y)+B(x) f(y)| \leq M \tag{2.9}
\end{equation*}
$$

Replacing x by y and y by x and using the triangle inequality we have

$$
\begin{equation*}
|f(x)+f(-x)| \leq 2 M \tag{2.10}
\end{equation*}
$$

for all $x \in G$. Replacing x by $-x, y$ by $-y$ in (2.9) and using the inequality (2.10) we have for some $M_{1}>0$,

$$
\begin{equation*}
|f(-x+y)+f(x) B(-y)-B(-x) f(y)| \leq M_{1} \tag{2.11}
\end{equation*}
$$

Using (2.9), (2.10), (2.11) and the triangle inequality we have

$$
\begin{equation*}
|f(x)(B(y)-B(-y))-f(y)(B(x)-B(-x))| \leq M_{1}+3 M \tag{2.12}
\end{equation*}
$$

Since f is unbounded it follows from (2.12) that $B(y)=B(-y)$ for all $y \in$ G. Also, in view of (2.9), for fixed $y \in G, x \rightarrow f(x+y)-f(x) B(-y)$ is a bounded function of x. Thus it follows from [10, p. 104, Theorem 5.2] that $B(y)$ is an exponential function. Since G is divisible by 2 we can write $B(x)=B\left(\frac{x}{2}\right) B\left(\frac{x}{2}\right)=B\left(\frac{x}{2}\right) B\left(-\frac{x}{2}\right)=B(0)$ and that $B(y) \equiv 1$ or 0 . Since f is unbounded, we have $B \equiv 1$. Replacing y by $-y$ in (2.9) and using (2.10), we have

$$
\begin{equation*}
|f(x+y)-f(x)-f(y)| \leq 3 M \tag{2.13}
\end{equation*}
$$

By the well known Hyers-Ulam stability theorem [11], there exists an additive function $A(x)$ such that

$$
\begin{equation*}
|f(x)-A(x)| \leq 3 M, \tag{2.14}
\end{equation*}
$$

which gives the case (iii). Now if the equality (2.3) holds, then by Lemma 2.1, f, g satisfies (iii) or (iv). This completes the proof.

As a direct consequence of Theorem 2.3 we have the following.
Corollary 2.4. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be continuous functions satisfying (2.1). Then f and g satisfy one of the followings:
(i) $f \equiv 0$ and g is arbitrary,
(ii) f and g are bounded functions,
(iii) $f(x)=c \cdot x+r(x), g(x)=\lambda(c \cdot x+r(x))+1$,
(iv) $f(x)=\lambda \sin (c \cdot x), g(x)=\cos (c \cdot x)+\lambda \sin (c \cdot x)$ for some $c \in \mathbb{C}^{n}, \lambda \in \mathbb{C}$ and a bounded function $r(x)$.

Proof. The continuous solutions of the equation (1.1) are given by (iv) or $f(x)=c \cdot x, g(x)=1+\lambda c \cdot x$. This completes the proof.

Now we prove the stability of the equation (1.2).
Lemma 2.5. Let $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality; there exists a positive constant M such that

$$
\begin{equation*}
|g(x-y)-g(x) g(y)-f(x) f(y)| \leq M \tag{2.15}
\end{equation*}
$$

for all $x, y \in G$. Then either there exist $\lambda, \nu \in \mathbb{C}$, not both zero, and $L>0$ such that

$$
\begin{equation*}
|\lambda f(x)-\nu g(x)| \leq L \tag{2.16}
\end{equation*}
$$

or else

$$
\begin{equation*}
g(x-y)-g(x) g(y)-f(x) f(y)=0 \tag{2.17}
\end{equation*}
$$

for all $x, y \in G$.

Proof. Suppose that, for $L>0,|\lambda f(x)-\nu g(y)| \leq L$ does not hold unless $\lambda=\nu=0$. Note that both f and g are unbounded. Let

$$
\begin{equation*}
F(x,-y)=g(x-y)-g(x) g(y)-f(x) f(y) \tag{2.18}
\end{equation*}
$$

Just for convenience, we consider the following equation which is equivalent to (2.18).

$$
\begin{equation*}
F(x, y)=g(x+y)-g(x) g(-y)-f(x) f(-y) . \tag{2.19}
\end{equation*}
$$

Since f is nonconstant, we can choose y_{1} satisfying $f\left(-y_{1}\right) \neq 0$. It is easy to show that

$$
\begin{equation*}
f(x)=\lambda_{0} g(x)+\lambda_{1} g\left(x+y_{1}\right)-\lambda_{1} F\left(x, y_{1}\right), \tag{2.20}
\end{equation*}
$$

where $\lambda_{0}=-\frac{g\left(-y_{1}\right)}{f\left(-y_{1}\right)}$ and $\lambda_{1}=\frac{1}{f\left(-y_{1}\right)}$.
By the definition of F and the use of (2.20), we have

$$
\begin{aligned}
& g((x+y)+z) \\
= & g(x+y) g(-z)+f(x+y) f(-z)+F(x+y, z) \\
= & (g(x) g(-y)+f(x) f(-y)+F(x, y)) g(-z) \\
& +\left(\lambda_{0} g(x+y)+\lambda_{1} g\left(x+y+y_{1}\right)-\lambda_{1} F\left(x+y, y_{1}\right)\right) f(-z) \\
& +F(x+y, z) \\
= & (g(x) g(-y)+f(x) f(-y)+F(x, y)) g(-z) \\
& +\lambda_{0}(g(x) g(-y)+f(x) f(-y)+F(x, y)) f(-z) \\
& +\lambda_{1}\left(g(x) g\left(-y-y_{1}\right)+f(x) f\left(-y-y_{1}\right)+F\left(x, y+y_{1}\right)\right) f(-z) \\
& -\lambda_{1} F\left(x+y, y_{1}\right) f(-z)+F(x+y, z),
\end{aligned}
$$

and

$$
\begin{equation*}
g(x+(y+z))=g(x) g(-y-z)+f(x) f(-y-z)+F(x, y+z) \tag{2.22}
\end{equation*}
$$

By equating the above two equations we have

$$
\begin{aligned}
& g(x)\left(g(-y) g(-z)+\lambda_{0} g(-y) f(-z)\right. \\
& \left.\quad+\lambda_{1} g\left(-y-y_{1}\right) f(-z)-g(-y-z)\right) \\
& \quad+f(x)\left(f(-y) g(-z)+\lambda_{0} f(-y) f(-z)\right. \\
& \left.\quad+\lambda_{1} f\left(-y-y_{1}\right) f(-z)-f(-y-z)\right) \\
& =-F(x, y) g(-z)-\lambda_{0} F(x, y) f(-z)-\lambda_{1} F\left(x, y+y_{1}\right) f(-z) \\
& \quad+\lambda_{1} F\left(x+y, y_{1}\right) f(-z)-F(x+y, z)+F(x, y+z) .
\end{aligned}
$$

When y, z are fixed, the right hand side of the above equality is bounded, so we have

$$
\begin{align*}
& F(x, y+z)-F(x+y, z) \tag{2.23}\\
= & F(x, y) g(-z)+\left(\lambda_{0} F(x, y)+\lambda_{1} F\left(x, y+y_{1}\right)-\lambda_{1} F\left(x+y, y_{1}\right)\right) f(-z)
\end{align*}
$$

Again considering (2.23) as a function of z for all fixed x, y, we have $F(x, y) \equiv 0$ which is equivalent to (2.17).

Theorem 2.6. Let $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality (2.15). Then f, g satisfy one of the followings:
(i) f and g are bounded functions,
(ii) $f(x)=\frac{1}{2}(m(x)-m(-x)), g(x)=\frac{1}{2}(m(x)+m(-x))$, where m is an exponential function.

Proof. First we prove that if the inequalities (2.15) and (2.16) hold, then both f and g are bounded functions. From (2.15), it is impossible that only one of f and g is unbounded. Assume that both f and g are unbounded. In view of (2.16), we can write

$$
\begin{equation*}
g=\mu f+B \tag{2.24}
\end{equation*}
$$

for some $\mu \neq 0$ and a bounded function B. Putting (2.24) in (2.15) we have
$|\mu f(x+y)+B(x+y)-(\mu f(x)+B(x))(\mu f(-y)+B(-y))+f(x) f(-y)| \leq M$.
Since B is bounded, we have

$$
f(x+y)-\mu^{-1}\left(\left(\mu^{2}+1\right) f(-y)+\mu B(-y)\right) f(x)
$$

is bounded for fixed $y \in G$. Thus it follows from [10, p. 104, Theorem 5.2] that

$$
\mu^{-1}\left(\left(\mu^{2}+1\right) f(y)+\mu B(y)\right)=m(y)
$$

for some exponential m. Thus if $\mu^{2}=-1$, we can write

$$
\begin{equation*}
f= \pm i(g-m), \tag{2.25}
\end{equation*}
$$

where m is a bounded exponential function. Putting (2.25) in (2.15) we have

$$
\begin{equation*}
|g(x-y)-g(x) m(y)-g(y) m(x)| \leq M \tag{2.26}
\end{equation*}
$$

for all $x, y \in G$.
Replacing x by y and y by x and using the triangle inequality we have

$$
\begin{equation*}
|g(x)-g(-x)| \leq 2 M \tag{2.27}
\end{equation*}
$$

for all $x \in G$. Replacing x by $-x, y$ by $-y$ and using the inequality (2.27) we have for some $M_{1}>0$,

$$
\begin{equation*}
|g(-x+y)-g(x) m(-y)-m(-x) g(y)| \leq M_{1} . \tag{2.28}
\end{equation*}
$$

Using (2.26), (2.27), (2.28) and the triangle inequality we have for some $M^{*}>$ 0,

$$
\begin{equation*}
|g(x)(m(y)-m(-y))-g(y)(m(x)-m(-x))| \leq M^{*}+3 M \tag{2.29}
\end{equation*}
$$

Since g is unbounded and m is bounded, it follows from (2.29) that $m(y)=$ $m(-y)$ for all $y \in G$. Since G is divisible by 2 we have $m \equiv 1$. Putting $y=x$ in (2.26), using the triangle inequality we have $|g(x)| \leq \frac{1}{2}(M+|g(0)|)$ for all $x \in G$, which contradicts to the assumption that f and g are unbounded. If $\mu \neq-1$, we have

$$
f=\frac{\mu(m-b)}{\mu^{2}+1}, \quad g=\frac{\mu^{2} m+b}{\mu^{2}+1}
$$

which contradicts to the assumption that both f and g are unbounded. If the equation (2.17) holds, then by Lemma 2.1, we have the case (ii). This completes the proof.

Since every continuous exponential function $m: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is given by $m(x)=$ $e^{c \cdot x}$ for some $c \in \mathbb{C}^{n}$, we have the following as a direct consequence of Theorem 2.6:

Corollary 2.7. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be continuous functions satisfying (2.15). Then f and g satisfy one of the followings:
(i) f and g are bounded measurable functions,
(ii) $f(x)=\cosh (c \cdot x), g(x)=\sinh (c \cdot x)$, where $c \in \mathbb{C}^{n}$.

References

[1] J. Aczél, Lectures on Functional Equations in Several Variables, Academic Press, New York-London, 1966.
[2] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, New York-Sydney, 1989.
[3] J. A. Baker, On a functional equation of Aczél and Chung, Aequationes Math. 46 (1993), 99-111.
[4] , The stability of cosine functional equation, Proc. Amer. Math. Soc. 80 (1980), 411-416.
[5] J. Chung, A distributional version of functional equations and their stabilities, Nonlinear Analysis 62 (2005), 1037-1051.
[6] , Stability of functional equations in the space distributions and hyperfunctions, J. Math. Anal. Appl. 286 (2003), 177-186.
[7] , Distributional method for d'Alembert equation, Arch. Math. 85 (2005), 156-160.
[8] S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Inc., Palm Harbor, Florida, 2003.
[9] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
[10] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, 1998.
[11] D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[12] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.

HYERS-ULAM STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS 575
[13] K. W. Jun and H. M. Kim, Stability problem for Jensen-type functional equations of cubic mappings, Acta Mathematica Sinica, English Series 22 (2006), no. 6, 1781-1788.
[14] C. G. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algabras, Bull. Sci. Math. 132 (2008), 87-96.
[15] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[16] , On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[17] L. Székelyhidi, The stability of sine and cosine functional equations, Proc. Amer. Math. Soc. 110 (1990), 109-115.
[18] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.

Jeongwook Chang
Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail address: jchang@kunsan.ac.kr
Jaeyoung Chung
Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail address: jychung@kunsan.ac.kr

