References
- I. S. Baek, Relation between spectral classes of a self-similar Cantor sets, J. Math. Anal. Appl. 292 (2004), no. 1, 294-302 https://doi.org/10.1016/j.jmaa.2003.12.001
- I. S. Baek, Dimensions of distribution sets in the unit interval, Commun. Korean Math. Soc. 22 (2007), no. 4, 547-552 https://doi.org/10.4134/CKMS.2007.22.4.547
- I. S. Baek, Dimensions of the subsets in the spectral classes of a self-similar Cantor set, Journal of Applied Mathematics and Informatics 26 (2008), no. 3-4, 733-738
- I. S. Baek, Characteristic multifractal in a self-similar Cantor set, Journal of the Chungcheong Math. Soc. 21 (2008), no. 2, 157-163
- I. S. Baek, Multifractal characterization of the Riesz-Nagy-Takacs function, preprint.
- I. S. Baek, L. Olsen, and N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (2007), no. 1, 267-287 https://doi.org/10.1016/j.aim.2007.02.003
- K. J. Falconer, The Fractal Geometry, John Wiley and Sons, 1990
- K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, 1997
- H. H. Lee and I. S. Baek, A note on equivalent interval covering systems for packing dimension of R, J. Korean Math. Soc. 28 (1991), no. 2, 195-205
- L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. 67 (2003), no. 2, 103-122 https://doi.org/10.1112/S0024610702003630
Cited by
- SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION vol.30, pp.1, 2015, https://doi.org/10.4134/CKMS.2015.30.1.007