# OUTER AUTOMORPHISM GROUPS OF POLYGONAL PRODUCTS OF CERTAIN CONJUGACY SEPARABLE GROUPS 

Goansu Kim* and Chi Yu Tang


#### Abstract

Grossman [7] showed that certain cyclically pinched 1-relator groups have residually finite outer automorphism groups. In this paper we prove that tree products of finitely generated free groups amalgamating maximal cyclic subgroups have residually finite outer automorphism groups. We also prove that polygonal products of finitely generated central subgroup separable groups amalgamating trivial intersecting central subgroups have residually finite outer automorphism groups.


## 1. Introduction

Outer automorphism groups have been widely studied for various purposes. The residual finiteness of outer automorphism groups of certain cyclically pinched 1-relator groups was first studied by E. Grossman [7] in which she proved that outer automorphism groups of the fundamental groups of orientable surfaces are residually finite $(\mathcal{R} \mathcal{F})$. It follows that the mapping class groups of orientable surfaces are $\mathcal{R \mathcal { F }}$. Wehrfritz [13] proved that outer automorphism groups of finitely generated nilpotent groups are isomorphic to subgroups of $G L(n, Z)$, whence such groups are $\mathcal{R F}$. D. Wise [14] gave an example of a finitely generated $\mathcal{R \mathcal { F }}$ group whose outer automorphism group is not $\mathcal{R} \mathcal{F}$, contrasting Baumslag's result [5] that automorphism groups of finitely generated residually finite groups are $\mathcal{R \mathcal { F }}$. Thus it is of interest to find out which finitely generated $\mathcal{R \mathcal { F }}$ groups have $\mathcal{R} \mathcal{F}$ outer automorphism groups. In [3], Allenby, Kim, and Tang showed that cyclically pinched 1-relator groups have $\mathcal{R} \mathcal{F}$ outer automorphism groups. From this it follows that mapping class groups of orientable and non-orientable surface groups are $\mathcal{R} \mathcal{F}$. Applying Fine and Rosenberger's result [6] that Fuchsian groups are conjugacy separable, Allenby, Kim, and Tang [4] showed that finitely generated Fuchsian groups have $\mathcal{R F}$ outer automorphism groups. Further Allenby, Kim, and Tang [1], [2] showed that

[^0]most of the Seifert groups have $\mathcal{R \mathcal { F }}$ outer automorphism groups. In this paper we prove that tree products of finitely generated free groups amalgamating maximal cyclic subgroups and polygonal products of finitely generated central subgroup separable groups amalgamating trivial intersecting central subgroups have $\mathcal{R} \mathcal{F}$ outer automorphism groups. Thus, in particular, polygonal products of finitely generated abelian groups amalgamating trivial intersecting subgroups have $\mathcal{R F}$ outer automorphism groups.

In Section 2, we give a brief summary of notation and results we need. In Section 3, we prove that tree products of finitely generated free groups amalgamating maximal cyclic subgroups have $\mathcal{R} \mathcal{F}$ outer automorphism groups. In Section 4, we prove a criterion for generalized free products amalgamating retracts of certain split extensions to be have Property E. Applying this result we prove, in Section 5, our main result Theorem 5.6.

## 2. Preliminaries

Throughout this paper we use standard notation and terminology.
If $A, B$ are groups, $G=A *_{H} B$ denotes the generalized free product of $A$ and $B$ amalgamating the subgroup $H$.

If $x \in G=A *_{H} B$, then $\|x\|$ denotes the free product length of $x$ in $G$.
If $g \in G$, Inn $g$ denotes the inner automorphism of $G$ induced by $g$.
Out $G$ denotes the outer automorphism group of $G$.
$x \sim_{G} y$ means that $x$ and $y$ are conjugate in $G$.
$Z(G)$ is the center of $G$.
$\mathcal{R F}$ is an abbreviation for "residually finite".
We use the somewhat unusual notation $1 \neq a \in A$ to mean $a \neq 1$ and $a \in A$.
Definition 2.1. By a conjugating endomorphism/automorphism of a group $G$ we mean an endomorphism/automorphism $\alpha$ which is such that, for each $g \in G$, there exists $k_{g} \in G$, depending on $g$, so that $\alpha(g)=k_{g}^{-1} g k_{g}$.

Definition 2.2 (Grossman [7]). A group $G$ has Property $A$ if, for each conjugating automorphism $\alpha$ of $G$, there exists a single element $k \in G$ such that $\alpha(g)=k^{-1} g k$ for all $g \in G$, i.e., $\alpha=\operatorname{Inn} k$.

We extend Grossman's Property A to include endomorphisms.
Definition 2.3 ([4]). A group $G$ has Property $E$ if, for each conjugating endomorphism $\alpha$ of $G$, there exists a single element $k \in G$ such that $\alpha(g)=k^{-1} g k$ for all $g \in G$, i.e., $\alpha=\operatorname{Inn} k$.

Clearly, every abelian group has Property E and every group having Property E has Property A. We will make use of the following result of Grossman [7]:

Theorem 2.4 (Grossman [7]). Let $B$ be a finitely generated, conjugacy separable group with Property $A$. Then Out $B$ is $\mathcal{R} \mathcal{F}$.

Theorem 2.5 ([3, Corollary 3.3]). Free groups and free products of cycles have Property E.
Theorem 2.6 ([11, Theorem 4.6]). Let $G=A *_{H} B$ and let $x \in G$ be of minimal length in its conjugacy class. Suppose that $y \in G$ is cyclically reduced, and that $x \sim_{G} y$.
(1) If $\|x\|=0$, then $\|y\| \leq 1$ and, if $y \in A$, then there is a sequence $h_{1}, h_{2}, \ldots, h_{r}$ of elements in $H$ such that

$$
y \sim_{A} h_{1} \sim_{B} h_{2} \sim_{A} \cdots \sim_{A(B)} h_{r}=x
$$

(2) If $\|x\|=1$, then $\|y\|=1$ and, either $x, y \in A$ and $x \sim_{A} y$, or $x, y \in B$ and $x \sim_{B} y$.
(3) If $\|x\| \geq 2$, then $\|x\|=\|y\|$ and $y \sim_{H} x^{*}$ where $x^{*}$ is a cyclic permutation of $x$.
Theorem 2.7 ([8]). Let $G=A *_{H} B$, where $A \neq H \neq B$ and $H \subset Z(B)$. Suppose A has Property E and the following conditions hold:
(C1) If $u \in A$ and $u^{-1} h u=h$ for all $h \in H$, then $u \in H$.
(C2) There exists an element $a \in A$ such that $\{a\}^{A} \cap H=\emptyset$ and if $u^{-1} a u=$ $h^{\prime} a h$, where $u \in A$ and $h^{\prime}, h \in H$, then $h^{\prime}=h^{-1}$.
Then $G$ has Property E.

## 3. On tree products of free groups

A subgroup $H$ of a group $G$ is malnormal if $u^{-1} H u \cap H=1$ for each $u \in G \backslash H$. We shall use the following result (Theorem 3.1 in [4]).

Theorem 3.1 ([4]). Let $G=A *_{H} B$, where $A \neq H \neq B$. Suppose the following conditions hold:
(A1) $H$ is malnormal in $A$ and $B$.
(A2) There exists an element $a \in A$ such that (i) $\{a\}^{A} \cap H=\emptyset$ and (ii) if $u^{-1} a u=h^{\prime} a h$, where $u \in A$ and $h^{\prime}, h \in H$, then $h^{\prime}=h^{-1}$.
Then $G$ has Property E.
We shall use $\{K\}^{B}=\left\{b^{-1} k b \mid k \in K, b \in B\right\}$.
Lemma 3.2. Let $G=A *_{H} B$, where $A \neq H \neq B$. Suppose $H$ is malnormal in $A$ and $B$. If $K$ is a malnormal subgroup in $B$, then $K$ is a malnormal subgroup in $G$.

Proof. Let $g^{-1} k_{1} g=k_{2}$, where $g \in G$ and $k_{1}, k_{2} \in K$ such that $k_{1} \neq 1 \neq k_{2}$. We shall show that $g \in K$. Let $g=u_{1} u_{2} \cdots u_{r}$ be the alternating product of $g$ in $G=A *_{H} B$.

Case 1. $H \cap\{K\}^{B}=1$.
In this case $k_{1} \in B \backslash H$. So if $u_{1} \in A \backslash H$, then $r \geq 1$ and the length of

$$
\begin{equation*}
g^{-1} k_{1} g=u_{r}^{-1} \cdots u_{1}^{-1} k_{1} u_{1} \cdots u_{r} \tag{3.1}
\end{equation*}
$$

is $2 r+1 \geq 3$. Thus $g^{-1} k_{1} g \neq k_{2}$. Therefore we may assume $u_{1} \in B$. Since $H \cap\{K\}^{B}=1, u_{1}^{-1} k_{1} u_{1} \in B \backslash H$. Thus, if $r \geq 2$, then the length of (3.1) is $2 r-1 \geq 3$. Therefore, for $g^{-1} k_{1} g=k_{2}$, we must have $r=1$, that is, $g=u_{1} \in B$. Since $K$ is malnormal in $B$ and $g^{-1} k_{1} g=k_{2}$, we have $g \in K$.

Case 2. $H \cap\{K\}^{B} \neq 1$.
(1) Suppose $u_{1} \in A \backslash H$. Let $r \geq 1$. If $k_{1} \notin H$, then the length of (3.1) is $2 r+1 \geq 3$. Hence $g^{-1} k_{1} g \neq k_{2}$. Therefore $k_{1} \in H$. Then, since $H$ is malnormal in $A$ and $u_{1} \in A \backslash H$, we have $u_{1}^{-1} k_{1} u_{1} \notin H$. Then the length of (3.1) is $2 r-1$. Since $g^{-1} k_{1} g=k_{2} \in B$, we have $r=1$ and $g=u_{1}$. Thus $k_{2}=g^{-1} k_{1} g \in A$. Hence $k_{2} \in A \cap B=H$. Since $H$ is malnormal in $A$, $g=u_{1} \in H$ which is impossible by the assumption $u_{1} \in A \backslash H$.
(2) $u_{1} \in B$. Suppose $r \geq 2$. Then $u_{2} \in A \backslash H$. If $u_{1}^{-1} k_{1} u_{1} \in H$, then $u_{2}^{-1}\left(u_{1}^{-1} k_{1} u_{1}\right) u_{2} \notin H(H$ is malnormal in $A)$. Hence $g^{-1} k_{1} g \neq k_{2} \in B$. On the other hand, if $u_{1}^{-1} k_{1} u_{1} \notin H$, then the length of (3.1) is $2 r-1 \geq 3$. Hence $g^{-1} k_{1} g \neq k_{2}$. Therefore we must have $r \leq 1$. Then $g=u_{1} \in B$ and $g^{-1} k_{1} g=$ $k_{2}$. Since $K$ is malnormal in $B$, we have $g \in K$.

This completes the proof that $K$ is malnormal in $G$.
Theorem 3.3. Let $G$ be a tree product of finite number of free groups $A_{i}$ $(1 \leq i \leq n)$ amalgamating maximal cyclic subgroups. Then $G$ has Property $E$.

Proof. Without loss of generality, let $A_{n}$ be an extremal vertex group of $G$ and let $T$ be the subgroup of $G$ generated by the rest of the vertices. Then $T$ is a tree product of $A_{i}(1 \leq i \leq n-1)$ amalgamating maximal cyclic subgroups. Thus we can consider $G=T *_{H} A_{n}$ where $H$ is a maximal cyclic subgroup in $A_{n}$ and in some vertex group of $T$. Hence we may assume $A_{n}$ is a free group of rank $\geq 2$. Since $A_{n}$ is free, as in Theorem 3.6 [4], there exists an element $a \in A_{n}$ such that (i) $\{a\}^{A_{n}} \cap H=\emptyset$ and (ii) if $u^{-1} a u=h^{\prime} a h$, where $u \in A_{n}$ and $h^{\prime}, h \in H$, then $h^{\prime}=h^{-1}$.

Since maximal cyclic subgroups in free groups are malnormal, $H$ is malnormal in $T$ by Lemma 3.2. Thus, by Theorem 3.1, $G=T *_{H} A_{n}$ has Property E.

Since tree products of free groups, amalgamating maximal cyclic subgroups, are conjugacy separable [12], we have the following by Theorem 2.4:

Theorem 3.4. Let $G$ be a tree product of finite number of finitely generated free groups $A_{i}(1 \leq i \leq n)$ amalgamating maximal cyclic subgroups. Then Out $G$ is residually finite.

## 4. A criterion

If there is a normal subgroup $N$ of a group $G$ such that $G=N \cdot H$ and $N \cap H=1$, then $G$ is called a split extension of $N$ by a retract $H$.

Lemma 4.1. Let $A_{0}, B_{0}$ be split extensions of $A, B$, respectively, by a retract $H$. Let $G=A_{0} *_{H} B_{0}$, where $A \subset Z\left(A_{0}\right)$. Suppose $\alpha$ is a conjugating endomorphism of $G$ such that $\alpha(g)=k_{g}^{-1} g k_{g}$ for $g \in G$. If there exist $1 \neq a \in A$ and $1 \neq b \in B$ such that $\alpha(a)=a$ and $\alpha(b)=b$, then we can choose $k_{h} \in H$, $k_{x} \in H$ and $k_{y} \in H$ for all $h \in H, x \in A$ and $y \in B$.

Proof. Suppose there exist $1 \neq a \in A, 1 \neq b \in B$ such that $\alpha(a)=a$ and $\alpha(b)=b$.

We first show that we can choose $k_{x} \in H$ for all $x \in A$. Let $1 \neq x \in A$ and $k_{x}=u_{1} u_{2} \cdots u_{r}$ be an alternating product of the shortest length in $G$ such that $\alpha(x)=k_{x}^{-1} x k_{x}$. Since $x \in A \subset Z\left(A_{0}\right)$, we can assume $u_{1} \in B_{0}$. Then $k_{x a}^{-1}(x a) k_{x a}=\alpha(x a)=\alpha(x) \alpha(a)=k_{x}^{-1} x k_{x} \cdot a=u_{r}^{-1} \cdots u_{2}^{-1} \cdot u_{1}^{-1} x u_{1}$. $u_{2} \cdots u_{r-1} \cdot u_{r} \cdot a$. Thus,

$$
\begin{equation*}
x a \sim_{G} u_{r-1}^{-1} \cdots u_{2}^{-1} \cdot u_{1}^{-1} x u_{1} \cdot u_{2} \cdots u_{r-1} \cdot u_{r} a u_{r}^{-1} \tag{4.1}
\end{equation*}
$$

Since $1 \neq x \in A$, if $u_{1} \in B_{0} \backslash H$, then $\left\|u_{1}^{-1} x u_{1}\right\|=3$. Hence if $u_{1} \in B_{0} \backslash H$, then the length of the R.H.S. of (4.1) is greater than 1 , whereas the length of the L.H.S. of (4.1) is at most 1, which is not possible by Theorem 2.6. Thus we may assume $k_{x}=u_{1} \in H$. Since $x \in A \subset Z\left(A_{0}\right), \alpha(x)=u_{1}^{-1} x u_{1}=x$. Therefore $\alpha(x)=x$ and $k_{x}=1 \in H$ for all $x \in A$.

We shall show that $k_{e} \in H$ for all $e \in H$. Let $1 \neq e \in H$ and $k_{e}=u_{1} u_{2} \cdots u_{r}$ be an alternating product of the shortest length in $G$ such that $\alpha(e)=k_{e}^{-1} e k_{e}$. Then $k_{e a}^{-1}(e a) k_{e a}=\alpha(e a)=\alpha(e) \alpha(a)=k_{e}^{-1} e k_{e} \cdot a=u_{r}^{-1} \cdots u_{2}^{-1} \cdot u_{1}^{-1} e u_{1}$. $u_{2} \cdots u_{r-1} \cdot u_{r} \cdot a$. Thus,

$$
\begin{equation*}
e a \sim_{G} u_{r-1}^{-1} \cdots u_{2}^{-1} \cdot u_{1}^{-1} e u_{1} \cdot u_{2} \cdots u_{r-1} \cdot u_{r} a u_{r}^{-1} \tag{4.2}
\end{equation*}
$$

(1) Suppose $u_{1} \in B_{0} \backslash H$.
(i) Suppose $u_{1}^{-1} e u_{1} \in H$. Let $u_{1}^{-1} e u_{1}=c \in H$ and $u_{1}=b h$ where $b \in B$ and $h \in H$. Then $h^{-1} b^{-1} e b h=c \in H$. Thus $b^{-1} e b=h c h^{-1} \in H$. Since $B \triangleleft B_{0}$, ebe $e^{-1}=b^{\prime} \in B$. This implies $b^{-1} b^{\prime}=h c h^{-1} e^{-1} \in H \cap B=1$. Hence $e=h c h^{-1}$. Then $u_{1}^{-1} e u_{1}=c=h^{-1} e h$, which would reduce the length of $k_{e}$.
(ii) Suppose $u_{1}^{-1} e u_{1} \notin H$. Then $u_{1}^{-1} e u_{1} \in B_{0} \backslash H$. Then the R.H.S. of (4.2) is greater than 1. Since the length of the L.H.S. of (4.2) is at most 1 , this would contradict Theorem 2.6.
(2) Suppose $u_{1} \in A_{0}$.

If $u_{1}^{-1} e u_{1}=c \in H$, then the length of $k_{e}$ would be reduced as in (i) above.
If $u_{1}^{-1} e u_{1} \notin H$, then $u_{1}^{-1} e u_{1} \in A_{0} \backslash H$. Since the length of the L.H.S. of (4.2) is at most 1 , we must have $r \leq 1$. Then $k_{e}=u_{1} \in A_{0}$. By assumption, there exists $1 \neq b \in B$ such that $\alpha(b)=b$. Now $e b \sim \alpha(e b)=u_{1}^{-1} e u_{1} b$. Since $e b \in B_{0}$ and $u_{1} \in A_{0}, u_{1}^{-1} e u_{1} \in H$ by Theorem 2.6. Then, as (i) above, $u_{1}^{-1} e u_{1}=h^{-1} e h$ for some $h \in H$. Hence $\alpha(e)=u_{1}^{-1} e u_{1}=h^{-1} e h$, that is, $k_{e}=h \in H$.

Finally we show that $k_{y} \in H$ for all $y \in B$. Let $1 \neq y \in B$ and $k_{y}=$ $u_{1} u_{2} \cdots u_{r}$ be an alternating product of the shortest length in $G$ such that $\alpha(y)=k_{y}^{-1} y k_{y}$. Then $k_{y a}^{-1}(y a) k_{y a}=\alpha(y a)=\alpha(y) \alpha(a)=k_{y}^{-1} y k_{y} \cdot a=$ $u_{r}^{-1} \cdots u_{2}^{-1} \cdot u_{1}^{-1} y u_{1} \cdot u_{2} \cdots u_{r-1} \cdot u_{r} \cdot a$. Thus,

$$
\begin{equation*}
y a \sim_{G} u_{r-1}^{-1} \cdots u_{2}^{-1} \cdot u_{1}^{-1} y u_{1} \cdot u_{2} \cdots u_{r-1} \cdot u_{r} a u_{r}^{-1} \tag{4.3}
\end{equation*}
$$

Clearly $u_{1} \notin A \backslash H$, so we may suppose $u_{1} \in B_{0}$. Since $y \in B \triangleleft B_{0}$ and $B \cap H=1$, we have $u_{1}^{-1} y u_{1} \notin H$. By considering the length of (4.3), we must have $r \leq 2$ and $k_{y}=u_{1} u_{2} \in B_{0} A_{0}$. Thus $y a \sim_{G} u_{1}^{-1} y u_{1} u_{2} a u_{2}^{-1}$. By Theorem 2.6, $y a \sim_{H} u_{1}^{-1} y u_{1} u_{2} a u_{2}^{-1}$. Hence

$$
y=h_{1}^{-1} u_{1}^{-1} y u_{1} h_{2} \text { and } a=h_{2}^{-1} u_{2} a u_{2}^{-1} h_{1}
$$

for some $h_{1}, h_{2} \in H$. Let $u_{1}=b_{1} h$ where $b_{1} \in B$ and $h \in H$. Then $y=$ $h_{1}^{-1} h^{-1} b_{1}^{-1} y b_{1} h h_{2}=c \in H$. Since $B \triangleleft B_{0}$, we have $h^{-1} b_{1}^{-1} y b_{1} h=b_{2} \in B$. Then $y=h_{1}^{-1} b_{2} h_{2}=h_{1}^{-1} h_{2} b_{3}$ where $b_{3}=h_{2}^{-1} b_{2} h_{2} \in B$. This implies $y b_{3}^{-1}=$ $h_{1}^{-1} h_{2} \in H \cap B=1$. Hence $h_{1}=h_{2}$. Thus $u_{1}^{-1} y u_{1}=h_{1} y h_{1}^{-1}$. It follows that we can choose $k_{y}=h_{1}^{-1} u_{2} \in A_{0}$. Since $y, b \in B_{0}, h^{-1} u_{2} \in A_{0}$ and

$$
y b \sim_{G} \alpha(y b)=k_{y}^{-1} y k_{y} b=\left(h_{1}^{-1} u_{2}\right)^{-1} y\left(h_{1}^{-1} u_{2}\right) b
$$

by Theorem 2.6 we must have $h_{1}^{-1} u_{2} \in H$. Hence $k_{y}=h_{1}^{-1} u_{2} \in H$ for each $y \in B$.

Lemma 4.2. Let $A_{0}, B_{0}$ be split extensions of $A, B$, respectively, by a retract $H$. Let $G=A_{0} *_{H} B_{0}$, where $A \subset Z\left(A_{0}\right)$. Suppose $A_{0}$ has property $E$. If $\alpha$ is a conjugating endomorphism of $G$, then there exists $g \in G$ such that $\alpha^{\prime}=\operatorname{Inn} g \circ \alpha$, where $\alpha^{\prime}(e)=e$ for all $e \in A_{0}$ and $\alpha^{\prime}(y)=h_{y}^{-1} y h_{y}$, where $h_{y} \in H$ for all $y \in B$.
Proof. Let $\alpha$ be a conjugating endomorphism of $G$ and $\alpha(g)=k_{g}^{-1} g k_{g}$ for $g \in G$. Without loss of generality, we can assume $\alpha(b)=b$ for a fixed element $1 \neq b \in B$. Let $1 \neq a \in A$ be a fixed element. Let $k_{a}=u_{1} u_{2} \cdots u_{r}$ be an alternating product of the shortest length from $G$ such that $\alpha(a)=k_{a}^{-1} a k_{a}$. Since $a \in A \subset Z\left(A_{0}\right)$, we can assume $u_{1} \in B_{0}$. In fact, we shall show that $k_{a} \in B_{0}$. Since $k_{a b}^{-1}(a b) k_{a b}=\alpha(a b)=k_{a}^{-1} a k_{a} \cdot b=u_{r}^{-1} \cdots u_{1}^{-1} a u_{1} \cdots u_{r} \cdot b$. Hence

$$
\begin{equation*}
a b \sim_{G} u_{r-1}^{-1} \cdots u_{2}^{-1} \cdot u_{1}^{-1} a u_{1} \cdot u_{2} \cdots u_{r-1} \cdot u_{r} b u_{r}^{-1} \tag{4.4}
\end{equation*}
$$

Suppose $r \geq 2$. If $u_{r} \in A_{0} \backslash H$, then the R.H.S. of (4.4) is cyclically reduced of length $2 r+2$. If $u_{r} \in B_{0} \backslash H$, then $u_{r} b u_{r}^{-1} \in B_{0} \backslash H\left(b \in B \triangleleft B_{0}\right)$. Hence the R.H.S. of (4.4) is cyclically reduced of length $2 r$. Since the L.H.S. of (4.4) is cyclically reduced of length 2 , both cases are impossible. Therefore, $r \leq 1$, that is, $k_{a}=u_{1} \in B_{0}$. So $\alpha(a)=u_{1}^{-1} a u_{1}$.

By (4.4), we have $a b \sim_{G} a u_{1} b u_{1}^{-1}$. From Theorem 2.6 there exist $h, h_{1} \in H$ such that $a=h^{-1} a h_{1}$ and $b=h_{1}^{-1} u_{1} b u_{1}^{-1} h$. Since $a \in Z\left(A_{0}\right)$, we have $h=h_{1}$.

Thus

$$
\begin{equation*}
b=h_{1}^{-1} u_{1} b u_{1}^{-1} h_{1} . \tag{4.5}
\end{equation*}
$$

Let $\bar{\alpha}=\operatorname{Inn} u_{1}^{-1} h_{1} \circ \alpha$. Then $\bar{\alpha}(a)=\left(u_{1}^{-1} h_{1}\right)^{-1} \alpha(a) u_{1}^{-1} h_{1}=h_{1}^{-1} a h_{1}=a$, since $\alpha(a)=u_{1}^{-1} a u_{1}$ and $a \in Z\left(A_{0}\right)$. Moreover, $\bar{\alpha}(b)=\left(u_{1}^{-1} h_{1}\right)^{-1} \alpha(b) u_{1}^{-1} h_{1}=$ $\left(u_{1}^{-1} h_{1}\right)^{-1} b u_{1}^{-1} h_{1}=b$ by (4.5).

For convenience, we again use $\alpha$ instead of $\bar{\alpha}$. Then $\alpha$ is a conjugating endomorphism of $G$ and $\alpha(g)=k_{g}^{-1} g k_{g}$ for $g \in G$, where $\alpha(a)=a$ and $\alpha(b)=b$ for fixed elements $1 \neq a \in A$ and $1 \neq b \in B$. By Lemma 4.1, we have $k_{h} \in H$ for all $h \in H, k_{x} \in H$ for all $x \in A$ and $k_{y} \in H$ for all $y \in B$.

Since $A \subset Z\left(A_{0}\right), \alpha(x h)=\alpha(x) \alpha(h)=k_{x}^{-1} x k_{x} \cdot k_{h}^{-1} h k_{h}=x k_{h}^{-1} h k_{h}=$ $k_{h}^{-1} x h k_{h}$ for all $x \in A$ and $h \in H$. Therefore, the restriction of $\alpha$ to $A_{0}$ is a conjugating endomorphism of $A_{0}$. Since $A_{0}$ has property E, there exists $c \in A_{0}$ such that $\alpha(e)=c^{-1} e c$ for all $e \in A_{0}$. Let $c=c_{1} h_{1}$, where $c_{1} \in A$ and $h_{1} \in H$. Since $A \subset Z\left(A_{0}\right)$, we have $\alpha(e)=h_{1}^{-1} e h_{1}$ for all $e \in A_{0}$. Let $\alpha^{\prime}=\operatorname{Inn} h_{1}^{-1} \circ \alpha$. Then $\alpha^{\prime}(e)=e$ for all $e \in A_{0}$ and $\alpha^{\prime}(y)=h_{1} k_{y}^{-1} y k_{y} h_{1}^{-1}$ for all $y \in B$, where $h_{1}, k_{y} \in H$.
Theorem 4.3. Let $A_{0}, B_{0}$ be split extensions of $A, B$, respectively, by a retract H. Let $G=A_{0} *_{H} B_{0}$, where $A \subset Z\left(A_{0}\right)$. Suppose $A_{0}, B_{0}$ have property $E$ and $B_{0}$ satisfies the following:
(D) For $u \in B_{0}$, if $u^{-1} h u=h$ for all $h \in H$, then $u \in Z\left(B_{0}\right)$.

## Then $G$ has Property E.

Proof. Let $\alpha$ be a conjugating endomorphism of $G$. By Lemma 4.2, we can assume that $\alpha(e)=e$ for all $e \in A_{0}$ and $\alpha(y)=k_{y}^{-1} y k_{y}$, where $k_{y} \in H$ for all $y \in B$.

We shall show that $k_{f} \in B_{0}$ for all $f \in B_{0}$. Consider $1 \neq y \in B$ and $h \in H$. Let $k_{y h}=u_{1} u_{2} \cdots u_{r}$ be an alternating product of the shortest length from $G$ such that $\bar{\alpha}(y h)=k_{y h}^{-1} y h k_{y h}$. Since $\alpha(y h)=\alpha(y) \alpha(h)=k_{y}^{-1} y k_{y} h$, we have

$$
\begin{equation*}
u_{r}^{-1} \cdots u_{2}^{-1} \cdot u_{1}^{-1} y h u_{1} \cdot u_{2} \cdots u_{r}=k_{y}^{-1} y k_{y} h \tag{4.6}
\end{equation*}
$$

Note that the R.H.S. of (4.6) is of length at most 1.
(1) Since the L.H.S. of (4.6) is of length at least 3, we must have $u_{1} \notin A_{0} \backslash H$.
(2) Suppose $u_{1} \in B_{0} \backslash H$ and $r \geq 2$. If $u_{1}^{-1} y h u_{1} \notin H$, then the L.H.S. of (4.6) is of length at least 3. Hence, suppose $u_{1}^{-1} y h u_{1} \in H$. Since $u_{2} \in A_{0}$, let $u_{2}=r t$ for $r \in A$ and $t \in H$. Then $u_{2}^{-1}\left(u_{1}^{-1} y h u_{1}\right) u_{2}=t^{-1}\left(u_{1}^{-1} y h u_{1}\right) t=$ $\left(u_{1} t\right)^{-1} y h\left(u_{1} t\right)$, which reduces the length of $k_{y h}$.
Therefore, $k_{y h}=u_{1} \in B_{0}$ for all $1 \neq y \in B$ and $h \in H$. Since $\alpha(e)=e$ for each $e \in A_{0}, \alpha(h)=h$ for all $h \in H$. Consequently, we have $k_{f} \in B_{0}$ for all $f \in B_{0}$.

Hence the restriction of $\alpha$ to $B_{0}$ is a conjugating endomorphism of $B_{0}$. Since $B_{0}$ has Property E, there exists $s \in B_{0}$ such that $\alpha(f)=s^{-1} f s$ for all $f \in B_{0}$. In particular, $\alpha(h)=s^{-1} h s$ for all $h \in H$. Since $\alpha(h)=h$, we have $s^{-1} h s=h$ for all $h \in H$. It follows from assumption (D) that $s \in Z\left(B_{0}\right)$. Therefore,
$\alpha(f)=s^{-1} f s=f$ for all $f \in B_{0}$. Consequently $\alpha$ is an identity on $G$. This proves that $G$ has Property E.

## 5. On polygonal products

In this section we shall show that outer automorphism groups of polygonal products of certain conjugacy separable groups, amalgamating central subgroups with trivial intersections, are residually finite. For convenience, we use the following notation:

Define $A_{1}=H_{0} \times H_{1}$ and $H_{i} H_{i+1}=H_{i} \times H_{i+1}$. For $r \geq 2$, define

$$
\begin{align*}
A_{r} & =H_{0} H_{1} *_{H_{1}} H_{1} H_{2} *_{H_{2}} \cdots *_{H_{r-1}} H_{r-1} H_{r},  \tag{5.1}\\
B_{r-1} & =\left\langle H_{0}, H_{1}, \ldots, H_{r-1}\right\rangle^{A_{r}}, \tag{5.2}
\end{align*}
$$

where the $H_{i}$ are finitely generated abelian groups and $H_{i} \cap H_{i+1}=1$. Then $A_{r}$ is a split extension of $B_{r-1}$ by the retract $H_{r}$. Note that $A_{r+1}=A_{r} *_{H_{r}} H_{r} H_{r+1}$.

Theorem 5.1. The group $A_{r+1}$ has Property Efor $r \geq 0$.
Proof. Clearly the abelian group $A_{1}=H_{0} \times H_{1}$ has Property E. Since $A_{2}=$ $H_{0} H_{1} *_{H_{1}} H_{1} H_{2}=\left(H_{0} * H_{2}\right) \times H_{1}, A_{2}$ has Property E. This is because by Theorem 2.2 [4] free products of groups with Property E have Property E and it is easy to check direct products of groups with Property E also have Property E.

We shall show that $A_{3}=A_{2} *_{H_{2}} H_{2} H_{3}$ has Property E. Let $\alpha$ be a conjugating endomorphism of $A_{3}$ such that $\alpha(g)=k_{g}^{-1} g k_{g}$ for $g \in A_{3}$. By Lemma 4.2, we can assume that $\alpha(e)=e$ for all $e \in H_{2} H_{3}$ and $\alpha(y)=k_{y}^{-1} y k_{y}$, where $k_{y} \in H_{2}$ for all $y \in B_{1}$. Since $H_{2}$ is abelian we have, for $h \in H_{2}, y \in B_{1}$, that $\alpha(y h)=\alpha(y) \alpha(h)=k_{y}^{-1} y k_{y} h=k_{y}^{-1} y h k_{y}$, where $k_{y} \in H_{2}$. Hence the restriction of $\alpha$ to $A_{2}$ is a conjugating endomorphism of $A_{2}$. Since $A_{2}$ has Property E, there exists $s \in A_{2}$ such that $\alpha(f)=s^{-1} f s$ for all $f \in A_{2}$. In particular, $\alpha(h)=s^{-1} h s$ for all $h \in H_{2}$. Since $\alpha(h)=h$ for $h \in H_{2}$, we have $h=s^{-1} h s$. Since $s \in A_{2}=\left(H_{0} * H_{2}\right) \times H_{1}$, let $s=w h_{1}$, where $w \in H_{0} * H_{2}$ and $h_{1} \in H_{1}$. Then $h=s^{-1} h s=w^{-1} h w$. Hence $w \in H_{2}$ and $s=w h_{1} \in H_{2} H_{1}$. Then $\alpha(f)=s^{-1} f s=w^{-1} f w$ for all $f \in A_{2}$ and $\alpha(e)=e=w^{-1} e w$ for all $e \in H_{2} H_{3}$. Therefore $\alpha=\operatorname{Inn} w$. This proves that $A_{3}$ has Property E.

Inductively we assume $A_{r}$ has Property E for $r \geq 3$. Let $\alpha$ be a conjugating endomorphism of $A_{r+1}$. Consider $A_{r+1}=A_{r} *_{H_{r}} H_{r} H_{r+1}$, where $A_{r}=B_{r-1} H_{r}$ (see (5.2)). By Lemma 4.2, we can assume that $\alpha(e)=e$ for all $e \in H_{r} H_{r+1}$ and $\alpha(y)=k_{y}^{-1} y k_{y}$, where $k_{y} \in H_{r}$, for all $y \in B_{r-1}$. Since $H_{r}$ is abelian for all $h \in H_{r}$ and $y \in B_{r-1}$, we have $\alpha(y h)=\alpha(y) \alpha(h)=k_{y}^{-1} y k_{y} h=$ $k_{y}^{-1} y h k_{y}$. Hence the restriction of $\alpha$ to $A_{r}$ is a conjugating endomorphism of $A_{r}$. Since $A_{r}$ has Property E by induction, there exists $s \in A_{r}$ such that $\alpha(f)=s^{-1} f s$ for all $f \in A_{r}$. In particular, for $h \in H_{r}$ we have $h=\alpha(h)=$ $s^{-1} h s$. Since $h \in H_{r}$ and $s \in A_{r}=A_{r-1} *_{H_{r-1}} H_{r-1} H_{r}$, by considering the
lengths of $h$ and $s^{-1} h s$, we have $s \in H_{r-1} H_{r}$. Let $s=h_{1} h_{2}$ where $h_{1} \in H_{r-1}$ and $h_{2} \in H_{r}$. Hence, for $f \in H_{0}$, we have $\alpha(f)=s^{-1} f s=h_{2}^{-1}\left(h_{1}^{-1} f h_{1}\right) h_{2}$. Since $\alpha(f)=k_{f}^{-1} f k_{f}$ for $k_{f} \in H_{r}$, we have $h_{2}^{-1}\left(h_{1}^{-1} f h_{1}\right) h_{2}=k_{f}^{-1} f k_{f}$, where $h_{1} \in H_{r-1}$ and $h_{2} \in H_{r}$. Thus we have

$$
\begin{align*}
h_{2}^{-1} & =k_{f}^{-1} h_{3},  \tag{5.3}\\
h_{1}^{-1} f h_{1} & =h_{3}^{-1} f h_{4},  \tag{5.4}\\
h_{2} & =h_{4}^{-1} k_{f} \tag{5.5}
\end{align*}
$$

for some $h_{3}, h_{4} \in H_{r-1}$. Since $H_{r-1} \cap H_{r}=1$, from (5.3) we have $h_{3}=1$ and $h_{2}=k_{f}$. Similarly, from (5.5) we have $h_{4}=1$. Then we must have $h_{1}=1$ from (5.4), since $f \in H_{0}$ and $h_{1} \in H_{r-1}$ where $r \geq 3$. Thus $\alpha(f)=s^{-1} f s=$ $h_{2}^{-1} f h_{2}$ for all $f \in A_{r}$ and $\alpha(e)=e=h_{2}^{-1} e h_{2}$ for all $e \in H_{r} H_{r+1}$. Therefore $\alpha=\operatorname{Inn} h_{2}$. This proves that $A_{r+1}$ has Property E.

Since tree products of finitely generated abelian groups are conjugacy separable [10], we have the following by Theorem 2.4:
Theorem 5.2. The group Out $A_{r}$ is residually finite.
For $r \geq 2$, we can consider $A_{r}$ as a split extension of $D_{r-1}=\left\langle H_{1}, \ldots, H_{r-1}\right\rangle^{A_{r}}$ by a retract $H=H_{0} * H_{r}$.

Lemma 5.3. Let $A_{r}=D_{r-1} H$ as above, where $r \geq 2$. If $u \in A_{r}$ and $u^{-1} h u=$ $h$ for all $h \in H$, then $u \in Z\left(A_{r}\right)$.
Proof. Since $Z\left(A_{2}\right)=H_{1}$ and $Z\left(A_{r}\right)=1$ for $r \geq 3$, we consider two cases separately.

Case 1. $r=2$. Note $A_{2}=H_{0} H_{1} *_{H_{1}} H_{1} H_{2}=\left(H_{0} * H_{2}\right) \times H_{1}$. Suppose $u \in A_{2}$ and $u^{-1} h u=h$ for all $h \in H=H_{0} * H_{2}$. For $1 \neq a \in H_{0}$, since $u^{-1} a u=a$, by considering the lengths of $u^{-1} a u=a, u$ can not be of the form $u=f_{1} e_{1} \cdots$, where $f_{1} \in H_{1} H_{2} \backslash H_{1}$ and $e_{1} \in H_{0} H_{1} \backslash H_{1}$. Also considering $1 \neq b \in H_{2}$ and $u^{-1} b u=b, u$ can not be of the form $u=e_{1} f_{1} \cdots$, where $e_{1} \in H_{0} H_{1} \backslash H_{1}$ and $f_{1} \in H_{1} H_{2} \backslash H_{1}$. Therefore $u \in H_{1}=Z\left(A_{2}\right)$.

Case 2. $r \geq 3$. Note $A_{r}=A_{r-1} *_{H_{r-1}} H_{r-1} H_{r}$ and $H=H_{0} * H_{r}$. As before, by considering $1 \neq a \in H_{0}$, since $u^{-1} a u=a$, $u$ can not be of the form $u=f_{1} e_{1} \cdots$, where $f_{1} \in H_{r-1} H_{r} \backslash H_{r-1}$ and $e_{1} \in A_{r-1} \backslash H_{r-1}$. Also considering $1 \neq b \in H_{r}$ and $u^{-1} b u=b, u$ can not be of the form $u=e_{1} f_{1} \cdots$, where $e_{1} \in$ $A_{r} \backslash H_{r-1}$ and $f_{1} \in H_{r-1} H_{r} \backslash H_{r-1}$. Thus $u \in H_{r-1}$. Again, for $1 \neq a \in H_{0}$, we have $u^{-1} a u=a$, where $u \in H_{r-1}$. Since $r \geq 3,\left\langle H_{0}, H_{r-1}\right\rangle=H_{0} * H_{r-1}$. Hence $u=1 \in Z\left(A_{r}\right)$.

Now for our main theorem, let $G$ be a polygonal product of groups $S_{1}, S_{2}, \ldots$, $S_{n}(n>3)$, amalgamating central subgroups $H_{1}, H_{2}, \ldots, H_{0}$, with trivial intersections. Hence $H_{i} \subset Z\left(S_{i}\right) \cap Z\left(S_{i+1}\right)$ and $H_{i} \cap H_{i+1}=1$ where $1 \leq$ $i \leq n$ and the subscripts are taken modulo $n$. Then the subgroup of $G$ generated by $H_{1}, H_{2}, \ldots, H_{0}$ is called a reduced polygonal product $P_{0}$ of $G$.

Thus $P_{0}$ is the polygonal product of $H_{0} H_{1}, H_{1} H_{2}, \ldots, H_{n-1} H_{0}$, amalgamating $H_{1}, H_{2}, \ldots, H_{0}$, and

$$
\begin{aligned}
P_{0} & =B_{0} *_{H} A_{0}, \text { where } \\
B_{0} & =H_{0} H_{1} *_{H_{1}} H_{1} H_{2} *_{H_{2}} \cdots *_{H_{n-3}} H_{n-3} H_{n-2}, \\
A_{0} & =H_{0} H_{n-1} *_{H_{n-1}} H_{n-1} H_{n-2} \text { and } \\
H & =H_{0} * H_{n-2} .
\end{aligned}
$$

We first show that $P_{0}$ has Property E.
Theorem 5.4. The reduced polygonal product $P_{0}$ has Property E.
Proof. Clearly $B_{0}$ is a split extensions of $\left\langle H_{1}, \ldots, H_{n-3}\right\rangle^{B_{0}}$ with a retract $H$ and $A_{0}$ is a split extensions of $H_{n-1}$ with retract $H$, where $H_{n-1} \subset Z\left(A_{0}\right)$. By Lemma 5.1, $A_{0}, B_{0}$ have Property E. By Lemma 5.3, $B_{0}$ satisfies (D) in Theorem 4.3. Hence, by Theorem 4.3, $P_{0}$ has Property E.

Theorem 5.5. Let $G$ be a polygonal product of groups $S_{1}, S_{2}, \ldots, S_{n}(n>$ 3), amalgamating central subgroups $H_{1}, H_{2}, \ldots, H_{0}$, with trivial intersections. Then $G$ has Property $E$.

Proof. Let $P_{0}$ be the reduced polygonal product of $G$ as before. For $i=$ $0,1, \ldots, n-1$, let

$$
P_{i+1}=\left(\cdots\left(P_{0} *_{H_{0} H_{1}} S_{1}\right) *_{H_{1} H_{2}} \cdots\right) *_{H_{i} H_{i+1}} S_{i+1} .
$$

Then $G=P_{n}$. By Theorem 5.4, $P$ has Property E. Thus, by induction, we can assume that $P_{0}, P_{1}, \ldots, P_{i}$ have Property E and we shall show that $P_{i+1}=$ $P_{i} *_{H_{i} H_{i+1}} S_{i+1}$ has Property E.

To prove (C1) in Theorem 2.7, let $c \in P_{i}$ and $c h=h c$ for all $h \in H_{i} H_{i+1}$. Let

$$
\begin{aligned}
E & =S_{i} *_{H_{i}} H_{i} H_{i+1} \\
F & =S_{i-1} *_{H_{i-2}} \cdots *_{H_{1}} S_{1} *_{H_{0}} H_{0} H_{n-1} *_{H_{n-1}} \cdots *_{H_{i+2}} H_{i+2} H_{i+1} \text { and } \\
H & =H_{i-1} * H_{i+1}
\end{aligned}
$$

where $S_{0}=H_{0} H_{n-1}, S_{-1}=H_{n-1} H_{n-2}, S_{-2}=H_{n-2} H_{n-3}$ and the subscripts of $H_{i}$ are taken modulo $n$. Then $P_{i}=E *_{H} F$. Since $c^{-1} h c=h$ for all $1 \neq h \in$ $H_{i}$, by considering the length of $c^{-1} h c=h, c$ can not be of the form $f_{1} e_{1} \cdots$, of length $\geq 1$, where $f_{1} \in F \backslash H$ and $e_{1} \in E \backslash H$. If $c=e_{1} f_{1} \cdots$ of length $\geq 2$ where $e_{1} \in E \backslash H$ and $f_{1} \in F \backslash H$, then $c^{-1} h c=\cdots f_{1}^{-1} e_{1}^{-1} h e_{1} f_{1} \cdots=\cdots f_{1}^{-1} h f_{1} \cdots$ is of length $\geq 3$. Hence $c^{-1} h c \neq h$. Therefore $c=e_{1} \in E=S_{i} *_{H_{i}} H_{i} H_{i+1}$.

On the other hand, we consider

$$
\begin{aligned}
E^{\prime} & =H_{i} H_{i+1} *_{H_{i+1}} H_{i+1} H_{i+2}, \\
F^{\prime} & =S_{i} *_{H_{i-1}} \cdots *_{H_{1}} S_{1} *_{H_{0}} H_{0} H_{n-1} *_{H_{n-1}} \cdots *_{H_{i+3}} H_{i+3} H_{i+2} \text { and } \\
H^{\prime} & =H_{i} * H_{i+2},
\end{aligned}
$$

where $S_{0}=H_{0} H_{n-1}$ and the subscripts of $H_{i}$ are taken modulo $n$. Then $P_{i}=E^{\prime} *_{H^{\prime}} F^{\prime}$. Since $c^{-1} h^{\prime} c=h^{\prime}$ for all $1 \neq h^{\prime} \in H_{i+1}$, by considering the length of $c^{-1} h^{\prime} c=h^{\prime}$ as before, we have $c=e_{1} \in E^{\prime}=H_{i} H_{i+1} *_{H_{i+1}} H_{i+1} H_{i+2}$. Hence $c \in E \cap E^{\prime}=H_{i} H_{i+1}$, as required. This proves the condition (C1) in Theorem 2.7.

To prove (C2) in Theorem 2.7, let $1 \neq a \in H_{i-2}$. If $a \sim_{P_{i}} x$ for $x \in H_{i} H_{i+1}$, then $a=x$ by Lemma 4.7 [9]. Since $H_{i-2} \cap H_{i} H_{i+1}=1$, it is impossible. Thus $\{a\}^{P_{i}} \cap H_{i} H_{i+1}=\emptyset$.

Suppose $u^{-1} a u=h^{\prime} a h$, where $1 \neq a \in H_{i-2}, u \in P_{i}$, and $h^{\prime}, h \in H_{i} H_{i+1}$. Then $a \sim_{P_{i}} a h h^{\prime}$. Since $a \in H_{i-2},\{a\}^{P_{i}} \cap\left(H_{i-1} * H_{i+1}\right)=\emptyset$. Hence $a \in F$ has the minimal length 1 in its conjugacy class in $P_{i}=E *_{H} F$, where $E, F, H$ are as above. It follows from Theorem 2.6 that $a h h^{\prime} \in F$ and $a \sim_{F} a h h^{\prime}$. Since $a \in F, h h^{\prime} \in F \cap H_{i} H_{i+1}=H_{i+1}$. Let $\bar{F}=F / M$, where

$$
M=\left\langle S_{i-2}, \ldots, S_{1}, H_{0} H_{n-1}, H_{n-1} H_{n-2}, \ldots, H_{i+3} H_{i+2}\right\rangle^{F}
$$

where $S_{0}=H_{0} H_{n-1}, S_{-1}=H_{n-1} H_{n-2}, S_{-2}=H_{n-2} H_{n-3}$ and the subscripts of $H_{i}$ are taken modulo $n$. Then $\bar{F}=F / M \cong\left(S_{i-1} / H_{i-2}\right) * \bar{H}_{i+1}$. In $\bar{F}$, $1=\bar{a} \sim_{\bar{F}} \bar{a} \overline{h h^{\prime}}$. It follows that $\overline{h h^{\prime}}=1$. Since $h h^{\prime} \in H_{i+1}, h h^{\prime}=1$. The condition (C2) in Theorem 2.7 holds.

Therefore $P_{i+1}=P_{i} *_{H_{i} H_{i+1}} S_{i+1}$ has Property E. Inductively, $G=P_{n}$ has Property E.

Since polygonal products of finitely generated central subgroup separable and conjugacy separable groups, amalgamating central subgroups with trivial intersections, are conjugacy separable [9], we have the following by Theorem 2.4:

Theorem 5.6. Let $G$ be a polygonal product of finitely generated central subgroup separable and conjugacy separable groups $S_{1}, S_{2}, \ldots, S_{n}(n>3)$, amalgamating central subgroups $H_{1}, H_{2}, \ldots, H_{0}$, with trivial intersections. Then Out $G$ is residually finite.

In particular we have the following:
Theorem 5.7. Let $G$ be a polygonal product of polycyclic-by-finite groups $S_{1}, S_{2}, \ldots, S_{n}(n>3)$, amalgamating central subgroups $H_{1}, H_{2}, \ldots, H_{0}$, with trivial intersections. Then Out $G$ is residually finite.

Corollary 5.8. Let $G$ be a polygonal product of finitely generated abelian groups $S_{1}, S_{2}, \ldots, S_{n}(n>3)$, amalgamating any subgroups $H_{1}, H_{2}, \ldots, H_{0}$, with trivial intersections. Then Out $G$ is residually finite.

## References

[1] R. B. J. T. Allenby, G. Kim, and C. Y. Tang, Outer automorphism groups of certain orientable Seifert 3-manifold groups, Combinatorial group theory, discrete groups, and number theory, 15-22, Contemp. Math., 421, Amer. Math. Soc., Providence, RI, 2006.
$\qquad$ , Outer automorphism groups of non-orientable Seifert 3-manifold groups, Preprint.
[3] $\qquad$ , Residual finiteness of outer automorphism groups of certain pinched 1-relator groups, J. Algebra 246 (2001), no. 2, 849-858.
[4] , Residual finiteness of outer automorphism groups of finitely generated nontriangle Fuchsian groups, Internat. J. Algebra Comput. 15 (2005), no. 1, 59-72.
[5] G. Baumslag, Automorphism groups of residually finite groups, J. London Math. Soc. 38 (1963), 117-118.
[6] B. Fine and G. Rosenberger, Conjugacy separability of Fuchsian groups and related questions, Combinatorial group theory (College Park, MD, 1988), 11-18, Contemp. Math., 109, Amer. Math. Soc., Providence, RI, 1990.
[7] E. K. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974/75), 160-164.
[8] G. Kim, Outer automorphism groups of certain polygonal products of groups, Bull. Korean Math. Soc. 45 (2008), no. 1, 45-52.
[9] G. Kim and C. Y. Tang, Separability properties of certain polygonal products of groups, J. Korean Math. Soc. 39 (2002), no. 3, 461-494.
[10] , Separability properties of certain tree products of groups, J. Algebra 251 (2002), no. 1, 323-349.
[11] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience Publishers [John Wiley \& Sons, Inc.], New York-London-Sydney 1966.
[12] L. Ribes, D. Segal, and P. A. Zalesskii, Conjugacy separability and free products of groups with cyclic amalgamation, J. London Math. Soc. (2) 57 (1998), no. 3, 609-628.
[13] B. A. F. Wehrfritz, Two remarks on polycyclic groups, Bull. London Math. Soc. 26 (1994), no. 6, 543-548.
[14] D. Wise, A residually finite version of Rips's construction, Bull. London Math. Soc. 35 (2003), no. 1, 23-29.

Goansu Kim
Department of Mathematics
Yeungnam University
Kyongsan 712-749, Korea
E-mail address: gskim@yu.ac.kr
Chi Yu Tang
Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada
E-mail address: fcytang@math.uwaterloo.ca


[^0]:    Received May 7, 2007; Revised September 13, 2007.
    2000 Mathematics Subject Classification. Primary 20E26, 20E06; Secondary 20F34.
    Key words and phrases. polygonal products of groups, generalized free products, residually finite, conjugacy separable, outer automorphism groups.
    *This research was supported by the Yeungnam University research grants in 2007.

