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OUTER AUTOMORPHISM GROUPS OF POLYGONAL
PRODUCTS OF CERTAIN CONJUGACY SEPARABLE

GROUPS

Goansu Kim∗ and Chi Yu Tang

Abstract. Grossman [7] showed that certain cyclically pinched 1-relator
groups have residually finite outer automorphism groups. In this paper

we prove that tree products of finitely generated free groups amalgamat-
ing maximal cyclic subgroups have residually finite outer automorphism
groups. We also prove that polygonal products of finitely generated cen-
tral subgroup separable groups amalgamating trivial intersecting central

subgroups have residually finite outer automorphism groups.

1. Introduction

Outer automorphism groups have been widely studied for various purposes.
The residual finiteness of outer automorphism groups of certain cyclically pin-
ched 1-relator groups was first studied by E. Grossman [7] in which she proved
that outer automorphism groups of the fundamental groups of orientable sur-
faces are residually finite (RF). It follows that the mapping class groups of
orientable surfaces are RF . Wehrfritz [13] proved that outer automorphism
groups of finitely generated nilpotent groups are isomorphic to subgroups of
GL(n,Z), whence such groups are RF . D. Wise [14] gave an example of a
finitely generated RF group whose outer automorphism group is not RF , con-
trasting Baumslag’s result [5] that automorphism groups of finitely generated
residually finite groups are RF . Thus it is of interest to find out which finitely
generated RF groups have RF outer automorphism groups. In [3], Allenby,
Kim, and Tang showed that cyclically pinched 1-relator groups have RF outer
automorphism groups. From this it follows that mapping class groups of ori-
entable and non-orientable surface groups are RF . Applying Fine and Rosen-
berger’s result [6] that Fuchsian groups are conjugacy separable, Allenby, Kim,
and Tang [4] showed that finitely generated Fuchsian groups have RF outer
automorphism groups. Further Allenby, Kim, and Tang [1], [2] showed that
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most of the Seifert groups have RF outer automorphism groups. In this pa-
per we prove that tree products of finitely generated free groups amalgamating
maximal cyclic subgroups and polygonal products of finitely generated central
subgroup separable groups amalgamating trivial intersecting central subgroups
have RF outer automorphism groups. Thus, in particular, polygonal products
of finitely generated abelian groups amalgamating trivial intersecting subgroups
have RF outer automorphism groups.

In Section 2, we give a brief summary of notation and results we need.
In Section 3, we prove that tree products of finitely generated free groups
amalgamating maximal cyclic subgroups have RF outer automorphism groups.
In Section 4, we prove a criterion for generalized free products amalgamating
retracts of certain split extensions to be have Property E. Applying this result
we prove, in Section 5, our main result Theorem 5.6.

2. Preliminaries

Throughout this paper we use standard notation and terminology.
If A,B are groups, G = A ∗H B denotes the generalized free product of A

and B amalgamating the subgroup H.
If x ∈ G = A ∗H B, then ∥x∥ denotes the free product length of x in G.
If g ∈ G, Inn g denotes the inner automorphism of G induced by g.
Out G denotes the outer automorphism group of G.
x ∼G y means that x and y are conjugate in G.
Z(G) is the center of G.
RF is an abbreviation for “residually finite”.
We use the somewhat unusual notation 1 ̸= a ∈ A to mean a ̸= 1 and a ∈ A.

Definition 2.1. By a conjugating endomorphism/automorphism of a group
G we mean an endomorphism/automorphism α which is such that, for each
g ∈ G, there exists kg ∈ G, depending on g, so that α(g) = k−1

g gkg.

Definition 2.2 (Grossman [7]). A group G has Property A if, for each con-
jugating automorphism α of G, there exists a single element k ∈ G such that
α(g) = k−1gk for all g ∈ G, i.e., α = Inn k.

We extend Grossman’s Property A to include endomorphisms.

Definition 2.3 ([4]). A group G has Property E if, for each conjugating endo-
morphism α of G, there exists a single element k ∈ G such that α(g) = k−1gk
for all g ∈ G, i.e., α = Inn k.

Clearly, every abelian group has Property E and every group having Prop-
erty E has Property A. We will make use of the following result of Grossman
[7]:

Theorem 2.4 (Grossman [7]). Let B be a finitely generated, conjugacy sepa-
rable group with Property A. Then Out B is RF .
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Theorem 2.5 ([3, Corollary 3.3]). Free groups and free products of cycles have
Property E.

Theorem 2.6 ([11, Theorem 4.6]). Let G = A ∗H B and let x ∈ G be of
minimal length in its conjugacy class. Suppose that y ∈ G is cyclically reduced,
and that x ∼G y.

(1) If ||x|| = 0, then ||y|| ≤ 1 and, if y ∈ A, then there is a sequence
h1, h2, . . . , hr of elements in H such that

y ∼A h1 ∼B h2 ∼A · · · ∼A(B) hr = x.

(2) If ||x|| = 1, then ||y|| = 1 and, either x, y ∈ A and x ∼A y, or x, y ∈ B
and x ∼B y.

(3) If ||x|| ≥ 2, then ||x|| = ||y|| and y ∼H x∗ where x∗ is a cyclic permu-
tation of x.

Theorem 2.7 ([8]). Let G = A ∗H B, where A ̸= H ̸= B and H ⊂ Z(B).
Suppose A has Property E and the following conditions hold:

(C1) If u ∈ A and u−1hu = h for all h ∈ H, then u ∈ H.
(C2) There exists an element a ∈ A such that {a}A ∩H = ∅ and if u−1au =

h′ah, where u ∈ A and h′, h ∈ H, then h′ = h−1.
Then G has Property E.

3. On tree products of free groups

A subgroup H of a group G is malnormal if u−1Hu ∩ H = 1 for each
u ∈ G\H. We shall use the following result (Theorem 3.1 in [4]).

Theorem 3.1 ([4]). Let G = A∗HB, where A ̸= H ̸= B. Suppose the following
conditions hold:

(A1) H is malnormal in A and B.
(A2) There exists an element a ∈ A such that (i) {a}A ∩ H = ∅ and (ii) if

u−1au = h′ah, where u ∈ A and h′, h ∈ H, then h′ = h−1.
Then G has Property E.

We shall use {K}B = {b−1kb | k ∈ K, b ∈ B}.

Lemma 3.2. Let G = A∗H B, where A ̸= H ̸= B. Suppose H is malnormal in
A and B. If K is a malnormal subgroup in B, then K is a malnormal subgroup
in G.

Proof. Let g−1k1g = k2, where g ∈ G and k1, k2 ∈ K such that k1 ̸= 1 ̸= k2.
We shall show that g ∈ K. Let g = u1u2 · · ·ur be the alternating product of g
in G = A ∗H B.

Case 1. H ∩ {K}B = 1.
In this case k1 ∈ B\H. So if u1 ∈ A\H, then r ≥ 1 and the length of

(3.1) g−1k1g = u−1
r · · ·u−1

1 k1u1 · · ·ur
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is 2r + 1 ≥ 3. Thus g−1k1g ̸= k2. Therefore we may assume u1 ∈ B. Since
H ∩ {K}B = 1, u−1

1 k1u1 ∈ B\H. Thus, if r ≥ 2, then the length of (3.1)
is 2r − 1 ≥ 3. Therefore, for g−1k1g = k2, we must have r = 1, that is,
g = u1 ∈ B. Since K is malnormal in B and g−1k1g = k2, we have g ∈ K.

Case 2. H ∩ {K}B ̸= 1.
(1) Suppose u1 ∈ A\H. Let r ≥ 1. If k1 ̸∈ H, then the length of (3.1)
is 2r + 1 ≥ 3. Hence g−1k1g ̸= k2. Therefore k1 ∈ H. Then, since H is
malnormal in A and u1 ∈ A\H, we have u−1

1 k1u1 ̸∈ H. Then the length of
(3.1) is 2r − 1. Since g−1k1g = k2 ∈ B, we have r = 1 and g = u1. Thus
k2 = g−1k1g ∈ A. Hence k2 ∈ A ∩ B = H. Since H is malnormal in A,
g = u1 ∈ H which is impossible by the assumption u1 ∈ A\H.
(2) u1 ∈ B. Suppose r ≥ 2. Then u2 ∈ A\H. If u−1

1 k1u1 ∈ H, then
u−1

2 (u−1
1 k1u1)u2 ̸∈ H (H is malnormal in A). Hence g−1k1g ̸= k2 ∈ B. On

the other hand, if u−1
1 k1u1 ̸∈ H, then the length of (3.1) is 2r − 1 ≥ 3. Hence

g−1k1g ̸= k2. Therefore we must have r ≤ 1. Then g = u1 ∈ B and g−1k1g =
k2. Since K is malnormal in B, we have g ∈ K.

This completes the proof that K is malnormal in G. ¤

Theorem 3.3. Let G be a tree product of finite number of free groups Ai

(1 ≤ i ≤ n) amalgamating maximal cyclic subgroups. Then G has Property E.

Proof. Without loss of generality, let An be an extremal vertex group of G and
let T be the subgroup of G generated by the rest of the vertices. Then T is a
tree product of Ai (1 ≤ i ≤ n − 1) amalgamating maximal cyclic subgroups.
Thus we can consider G = T ∗H An where H is a maximal cyclic subgroup in
An and in some vertex group of T . Hence we may assume An is a free group
of rank ≥ 2. Since An is free, as in Theorem 3.6 [4], there exists an element
a ∈ An such that (i) {a}An ∩ H = ∅ and (ii) if u−1au = h′ah, where u ∈ An

and h′, h ∈ H, then h′ = h−1.
Since maximal cyclic subgroups in free groups are malnormal, H is mal-

normal in T by Lemma 3.2. Thus, by Theorem 3.1, G = T ∗H An has Prop-
erty E. ¤

Since tree products of free groups, amalgamating maximal cyclic subgroups,
are conjugacy separable [12], we have the following by Theorem 2.4:

Theorem 3.4. Let G be a tree product of finite number of finitely generated
free groups Ai (1 ≤ i ≤ n) amalgamating maximal cyclic subgroups. Then
Out G is residually finite.

4. A criterion

If there is a normal subgroup N of a group G such that G = N · H and
N ∩ H = 1, then G is called a split extension of N by a retract H.
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Lemma 4.1. Let A0, B0 be split extensions of A,B, respectively, by a retract
H. Let G = A0 ∗H B0, where A ⊂ Z(A0). Suppose α is a conjugating endo-
morphism of G such that α(g) = k−1

g gkg for g ∈ G. If there exist 1 ̸= a ∈ A
and 1 ̸= b ∈ B such that α(a) = a and α(b) = b, then we can choose kh ∈ H,
kx ∈ H and ky ∈ H for all h ∈ H, x ∈ A and y ∈ B.

Proof. Suppose there exist 1 ̸= a ∈ A, 1 ̸= b ∈ B such that α(a) = a and
α(b) = b.

We first show that we can choose kx ∈ H for all x ∈ A. Let 1 ̸= x ∈ A
and kx = u1u2 · · ·ur be an alternating product of the shortest length in G
such that α(x) = k−1

x xkx. Since x ∈ A ⊂ Z(A0), we can assume u1 ∈ B0.
Then k−1

xa (xa)kxa = α(xa) = α(x)α(a) = k−1
x xkx · a = u−1

r · · ·u−1
2 · u−1

1 xu1 ·
u2 · · ·ur−1 · ur · a. Thus,

(4.1) xa ∼G u−1
r−1 · · ·u

−1
2 · u−1

1 xu1 · u2 · · ·ur−1 · urau−1
r .

Since 1 ̸= x ∈ A, if u1 ∈ B0\H, then ∥u−1
1 xu1∥ = 3. Hence if u1 ∈ B0\H,

then the length of the R.H.S. of (4.1) is greater than 1, whereas the length of
the L.H.S. of (4.1) is at most 1, which is not possible by Theorem 2.6. Thus
we may assume kx = u1 ∈ H. Since x ∈ A ⊂ Z(A0), α(x) = u−1

1 xu1 = x.
Therefore α(x) = x and kx = 1 ∈ H for all x ∈ A.

We shall show that ke ∈ H for all e ∈ H. Let 1 ̸= e ∈ H and ke = u1u2 · · ·ur

be an alternating product of the shortest length in G such that α(e) = k−1
e eke.

Then k−1
ea (ea)kea = α(ea) = α(e)α(a) = k−1

e eke · a = u−1
r · · ·u−1

2 · u−1
1 eu1 ·

u2 · · ·ur−1 · ur · a. Thus,

(4.2) ea ∼G u−1
r−1 · · ·u

−1
2 · u−1

1 eu1 · u2 · · ·ur−1 · urau−1
r .

(1) Suppose u1 ∈ B0\H.
(i) Suppose u−1

1 eu1 ∈ H. Let u−1
1 eu1 = c ∈ H and u1 = bh where b ∈ B

and h ∈ H. Then h−1b−1ebh = c ∈ H. Thus b−1eb = hch−1 ∈ H. Since
B ¢ B0, ebe−1 = b′ ∈ B. This implies b−1b′ = hch−1e−1 ∈ H ∩ B = 1. Hence
e = hch−1. Then u−1

1 eu1 = c = h−1eh, which would reduce the length of ke.
(ii) Suppose u−1

1 eu1 ̸∈ H. Then u−1
1 eu1 ∈ B0\H. Then the R.H.S. of (4.2)

is greater than 1. Since the length of the L.H.S. of (4.2) is at most 1, this would
contradict Theorem 2.6.

(2) Suppose u1 ∈ A0.
If u−1

1 eu1 = c ∈ H, then the length of ke would be reduced as in (i) above.
If u−1

1 eu1 ̸∈ H, then u−1
1 eu1 ∈ A0\H. Since the length of the L.H.S. of

(4.2) is at most 1, we must have r ≤ 1. Then ke = u1 ∈ A0. By assumption,
there exists 1 ̸= b ∈ B such that α(b) = b. Now eb ∼ α(eb) = u−1

1 eu1b. Since
eb ∈ B0 and u1 ∈ A0, u−1

1 eu1 ∈ H by Theorem 2.6. Then, as (i) above,
u−1

1 eu1 = h−1eh for some h ∈ H. Hence α(e) = u−1
1 eu1 = h−1eh, that is,

ke = h ∈ H.
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Finally we show that ky ∈ H for all y ∈ B. Let 1 ̸= y ∈ B and ky =
u1u2 · · ·ur be an alternating product of the shortest length in G such that
α(y) = k−1

y yky. Then k−1
ya (ya)kya = α(ya) = α(y)α(a) = k−1

y yky · a =
u−1

r · · ·u−1
2 · u−1

1 yu1 · u2 · · ·ur−1 · ur · a. Thus,

(4.3) ya ∼G u−1
r−1 · · ·u

−1
2 · u−1

1 yu1 · u2 · · ·ur−1 · urau−1
r .

Clearly u1 ̸∈ A\H, so we may suppose u1 ∈ B0. Since y ∈ B ¢ B0 and
B ∩ H = 1, we have u−1

1 yu1 ̸∈ H. By considering the length of (4.3), we
must have r ≤ 2 and ky = u1u2 ∈ B0A0. Thus ya ∼G u−1

1 yu1u2au−1
2 . By

Theorem 2.6, ya ∼H u−1
1 yu1u2au−1

2 . Hence

y = h−1
1 u−1

1 yu1h2 and a = h−1
2 u2au−1

2 h1

for some h1, h2 ∈ H. Let u1 = b1h where b1 ∈ B and h ∈ H. Then y =
h−1

1 h−1b−1
1 yb1hh2 = c ∈ H. Since B ¢ B0, we have h−1b−1

1 yb1h = b2 ∈ B.
Then y = h−1

1 b2h2 = h−1
1 h2b3 where b3 = h−1

2 b2h2 ∈ B. This implies yb−1
3 =

h−1
1 h2 ∈ H ∩ B = 1. Hence h1 = h2. Thus u−1

1 yu1 = h1yh−1
1 . It follows that

we can choose ky = h−1
1 u2 ∈ A0. Since y, b ∈ B0, h−1u2 ∈ A0 and

yb ∼G α(yb) = k−1
y ykyb = (h−1

1 u2)−1y(h−1
1 u2)b,

by Theorem 2.6 we must have h−1
1 u2 ∈ H. Hence ky = h−1

1 u2 ∈ H for each
y ∈ B. ¤

Lemma 4.2. Let A0, B0 be split extensions of A,B, respectively, by a retract
H. Let G = A0 ∗H B0, where A ⊂ Z(A0). Suppose A0 has property E. If
α is a conjugating endomorphism of G, then there exists g ∈ G such that
α′ = Inn g ◦ α, where α′(e) = e for all e ∈ A0 and α′(y) = h−1

y yhy, where
hy ∈ H for all y ∈ B.

Proof. Let α be a conjugating endomorphism of G and α(g) = k−1
g gkg for

g ∈ G. Without loss of generality, we can assume α(b) = b for a fixed element
1 ̸= b ∈ B. Let 1 ̸= a ∈ A be a fixed element. Let ka = u1u2 · · ·ur be an
alternating product of the shortest length from G such that α(a) = k−1

a aka.
Since a ∈ A ⊂ Z(A0), we can assume u1 ∈ B0. In fact, we shall show that
ka ∈ B0. Since k−1

ab (ab)kab = α(ab) = k−1
a aka · b = u−1

r · · ·u−1
1 au1 · · ·ur · b.

Hence

(4.4) ab ∼G u−1
r−1 · · ·u

−1
2 · u−1

1 au1 · u2 · · ·ur−1 · urbu
−1
r .

Suppose r ≥ 2. If ur ∈ A0\H, then the R.H.S. of (4.4) is cyclically reduced
of length 2r + 2. If ur ∈ B0\H, then urbu

−1
r ∈ B0\H (b ∈ B ¢ B0). Hence

the R.H.S. of (4.4) is cyclically reduced of length 2r. Since the L.H.S. of (4.4)
is cyclically reduced of length 2, both cases are impossible. Therefore, r ≤ 1,
that is, ka = u1 ∈ B0. So α(a) = u−1

1 au1.
By (4.4), we have ab ∼G au1bu

−1
1 . From Theorem 2.6 there exist h, h1 ∈ H

such that a = h−1ah1 and b = h−1
1 u1bu

−1
1 h. Since a ∈ Z(A0), we have h = h1.
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Thus

(4.5) b = h−1
1 u1bu

−1
1 h1.

Let α = Inn u−1
1 h1 ◦ α. Then α(a) = (u−1

1 h1)−1α(a)u−1
1 h1 = h−1

1 ah1 = a,
since α(a) = u−1

1 au1 and a ∈ Z(A0). Moreover, α(b) = (u−1
1 h1)−1α(b)u−1

1 h1 =
(u−1

1 h1)−1bu−1
1 h1 = b by (4.5).

For convenience, we again use α instead of α. Then α is a conjugating
endomorphism of G and α(g) = k−1

g gkg for g ∈ G, where α(a) = a and
α(b) = b for fixed elements 1 ̸= a ∈ A and 1 ̸= b ∈ B. By Lemma 4.1, we have
kh ∈ H for all h ∈ H, kx ∈ H for all x ∈ A and ky ∈ H for all y ∈ B.

Since A ⊂ Z(A0), α(xh) = α(x)α(h) = k−1
x xkx · k−1

h hkh = xk−1
h hkh =

k−1
h xhkh for all x ∈ A and h ∈ H. Therefore, the restriction of α to A0 is a

conjugating endomorphism of A0. Since A0 has property E, there exists c ∈ A0

such that α(e) = c−1ec for all e ∈ A0. Let c = c1h1, where c1 ∈ A and h1 ∈ H.
Since A ⊂ Z(A0), we have α(e) = h−1

1 eh1 for all e ∈ A0. Let α′ = Inn h−1
1 ◦α.

Then α′(e) = e for all e ∈ A0 and α′(y) = h1k
−1
y ykyh−1

1 for all y ∈ B, where
h1, ky ∈ H. ¤

Theorem 4.3. Let A0, B0 be split extensions of A,B, respectively, by a retract
H. Let G = A0 ∗H B0, where A ⊂ Z(A0). Suppose A0, B0 have property E and
B0 satisfies the following:

(D) For u ∈ B0, if u−1hu = h for all h ∈ H, then u ∈ Z(B0).
Then G has Property E.

Proof. Let α be a conjugating endomorphism of G. By Lemma 4.2, we can
assume that α(e) = e for all e ∈ A0 and α(y) = k−1

y yky, where ky ∈ H for all
y ∈ B.

We shall show that kf ∈ B0 for all f ∈ B0. Consider 1 ̸= y ∈ B and h ∈ H.
Let kyh = u1u2 · · ·ur be an alternating product of the shortest length from G

such that α(yh) = k−1
yh yhkyh. Since α(yh) = α(y)α(h) = k−1

y ykyh, we have

(4.6) u−1
r · · ·u−1

2 · u−1
1 yhu1 · u2 · · ·ur = k−1

y ykyh.

Note that the R.H.S. of (4.6) is of length at most 1.
(1) Since the L.H.S. of (4.6) is of length at least 3, we must have u1 ̸∈ A0\H.
(2) Suppose u1 ∈ B0\H and r ≥ 2. If u−1

1 yhu1 ̸∈ H, then the L.H.S. of
(4.6) is of length at least 3. Hence, suppose u−1

1 yhu1 ∈ H. Since u2 ∈ A0,
let u2 = rt for r ∈ A and t ∈ H. Then u−1

2 (u−1
1 yhu1)u2 = t−1(u−1

1 yhu1)t =
(u1t)−1yh(u1t), which reduces the length of kyh.
Therefore, kyh = u1 ∈ B0 for all 1 ̸= y ∈ B and h ∈ H. Since α(e) = e for each
e ∈ A0, α(h) = h for all h ∈ H. Consequently, we have kf ∈ B0 for all f ∈ B0.

Hence the restriction of α to B0 is a conjugating endomorphism of B0. Since
B0 has Property E, there exists s ∈ B0 such that α(f) = s−1fs for all f ∈ B0.
In particular, α(h) = s−1hs for all h ∈ H. Since α(h) = h, we have s−1hs = h
for all h ∈ H. It follows from assumption (D) that s ∈ Z(B0). Therefore,
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α(f) = s−1fs = f for all f ∈ B0. Consequently α is an identity on G. This
proves that G has Property E. ¤

5. On polygonal products

In this section we shall show that outer automorphism groups of polygonal
products of certain conjugacy separable groups, amalgamating central sub-
groups with trivial intersections, are residually finite. For convenience, we use
the following notation:

Define A1 = H0 × H1 and HiHi+1 = Hi × Hi+1. For r ≥ 2, define

Ar = H0H1 ∗H1 H1H2 ∗H2 · · · ∗Hr−1 Hr−1Hr,(5.1)

Br−1 = ⟨H0,H1, . . . ,Hr−1⟩Ar ,(5.2)

where the Hi are finitely generated abelian groups and Hi∩Hi+1 = 1. Then Ar

is a split extension of Br−1 by the retract Hr. Note that Ar+1 = Ar∗Hr HrHr+1.

Theorem 5.1. The group Ar+1 has Property E for r ≥ 0.

Proof. Clearly the abelian group A1 = H0 × H1 has Property E. Since A2 =
H0H1 ∗H1 H1H2 = (H0 ∗ H2) × H1, A2 has Property E. This is because by
Theorem 2.2 [4] free products of groups with Property E have Property E
and it is easy to check direct products of groups with Property E also have
Property E.

We shall show that A3 = A2∗H2H2H3 has Property E. Let α be a conjugating
endomorphism of A3 such that α(g) = k−1

g gkg for g ∈ A3. By Lemma 4.2,
we can assume that α(e) = e for all e ∈ H2H3 and α(y) = k−1

y yky, where
ky ∈ H2 for all y ∈ B1. Since H2 is abelian we have, for h ∈ H2, y ∈ B1,
that α(yh) = α(y)α(h) = k−1

y ykyh = k−1
y yhky, where ky ∈ H2. Hence the

restriction of α to A2 is a conjugating endomorphism of A2. Since A2 has
Property E, there exists s ∈ A2 such that α(f) = s−1fs for all f ∈ A2. In
particular, α(h) = s−1hs for all h ∈ H2. Since α(h) = h for h ∈ H2, we have
h = s−1hs. Since s ∈ A2 = (H0∗H2)×H1, let s = wh1, where w ∈ H0∗H2 and
h1 ∈ H1. Then h = s−1hs = w−1hw. Hence w ∈ H2 and s = wh1 ∈ H2H1.
Then α(f) = s−1fs = w−1fw for all f ∈ A2 and α(e) = e = w−1ew for all
e ∈ H2H3. Therefore α = Inn w. This proves that A3 has Property E.

Inductively we assume Ar has Property E for r ≥ 3. Let α be a con-
jugating endomorphism of Ar+1. Consider Ar+1 = Ar ∗Hr HrHr+1, where
Ar = Br−1Hr (see (5.2)). By Lemma 4.2, we can assume that α(e) = e for all
e ∈ HrHr+1 and α(y) = k−1

y yky, where ky ∈ Hr, for all y ∈ Br−1. Since Hr is
abelian for all h ∈ Hr and y ∈ Br−1, we have α(yh) = α(y)α(h) = k−1

y ykyh =
k−1

y yhky. Hence the restriction of α to Ar is a conjugating endomorphism
of Ar. Since Ar has Property E by induction, there exists s ∈ Ar such that
α(f) = s−1fs for all f ∈ Ar. In particular, for h ∈ Hr we have h = α(h) =
s−1hs. Since h ∈ Hr and s ∈ Ar = Ar−1 ∗Hr−1 Hr−1Hr, by considering the



OUTER AUTOMORPHISM GROUPS OF POLYGONAL PRODUCTS 1749

lengths of h and s−1hs, we have s ∈ Hr−1Hr. Let s = h1h2 where h1 ∈ Hr−1

and h2 ∈ Hr. Hence, for f ∈ H0, we have α(f) = s−1fs = h−1
2 (h−1

1 fh1)h2.
Since α(f) = k−1

f fkf for kf ∈ Hr, we have h−1
2 (h−1

1 fh1)h2 = k−1
f fkf , where

h1 ∈ Hr−1 and h2 ∈ Hr. Thus we have

h−1
2 = k−1

f h3,(5.3)

h−1
1 fh1 = h−1

3 fh4,(5.4)

h2 = h−1
4 kf(5.5)

for some h3, h4 ∈ Hr−1. Since Hr−1 ∩ Hr = 1, from (5.3) we have h3 = 1 and
h2 = kf . Similarly, from (5.5) we have h4 = 1. Then we must have h1 = 1
from (5.4), since f ∈ H0 and h1 ∈ Hr−1 where r ≥ 3. Thus α(f) = s−1fs =
h−1

2 fh2 for all f ∈ Ar and α(e) = e = h−1
2 eh2 for all e ∈ HrHr+1. Therefore

α = Inn h2. This proves that Ar+1 has Property E. ¤

Since tree products of finitely generated abelian groups are conjugacy sepa-
rable [10], we have the following by Theorem 2.4:

Theorem 5.2. The group Out Ar is residually finite.

For r ≥ 2, we can consider Ar as a split extension of Dr−1 =⟨H1, . . . ,Hr−1⟩Ar

by a retract H = H0 ∗ Hr.

Lemma 5.3. Let Ar = Dr−1H as above, where r ≥ 2. If u ∈ Ar and u−1hu =
h for all h ∈ H, then u ∈ Z(Ar).

Proof. Since Z(A2) = H1 and Z(Ar) = 1 for r ≥ 3, we consider two cases
separately.

Case 1. r = 2. Note A2 = H0H1 ∗H1 H1H2 = (H0 ∗ H2) × H1. Suppose
u ∈ A2 and u−1hu = h for all h ∈ H = H0 ∗ H2. For 1 ̸= a ∈ H0, since
u−1au = a, by considering the lengths of u−1au = a, u can not be of the
form u = f1e1 · · · , where f1 ∈ H1H2\H1 and e1 ∈ H0H1\H1. Also considering
1 ̸= b ∈ H2 and u−1bu = b, u can not be of the form u = e1f1 · · · , where
e1 ∈ H0H1\H1 and f1 ∈ H1H2\H1. Therefore u ∈ H1 = Z(A2).

Case 2. r ≥ 3. Note Ar = Ar−1 ∗Hr−1 Hr−1Hr and H = H0 ∗ Hr. As
before, by considering 1 ̸= a ∈ H0, since u−1au = a, u can not be of the form
u = f1e1 · · · , where f1 ∈ Hr−1Hr\Hr−1 and e1 ∈ Ar−1\Hr−1. Also considering
1 ̸= b ∈ Hr and u−1bu = b, u can not be of the form u = e1f1 · · · , where e1 ∈
Ar\Hr−1 and f1 ∈ Hr−1Hr\Hr−1. Thus u ∈ Hr−1. Again, for 1 ̸= a ∈ H0,
we have u−1au = a, where u ∈ Hr−1. Since r ≥ 3, ⟨H0, Hr−1⟩ = H0 ∗ Hr−1.
Hence u = 1 ∈ Z(Ar). ¤

Now for our main theorem, let G be a polygonal product of groups S1, S2, . . . ,
Sn (n > 3), amalgamating central subgroups H1,H2, . . . ,H0, with trivial in-
tersections. Hence Hi ⊂ Z(Si) ∩ Z(Si+1) and Hi ∩ Hi+1 = 1 where 1 ≤
i ≤ n and the subscripts are taken modulo n. Then the subgroup of G
generated by H1,H2, . . . ,H0 is called a reduced polygonal product P0 of G.
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Thus P0 is the polygonal product of H0H1, H1H2, . . . , Hn−1H0, amalgamating
H1,H2, . . . ,H0, and

P0 = B0 ∗H A0, where
B0 = H0H1 ∗H1 H1H2 ∗H2 · · · ∗Hn−3 Hn−3Hn−2,

A0 = H0Hn−1 ∗Hn−1 Hn−1Hn−2 and
H = H0 ∗ Hn−2.

We first show that P0 has Property E.

Theorem 5.4. The reduced polygonal product P0 has Property E.

Proof. Clearly B0 is a split extensions of ⟨H1, . . . ,Hn−3⟩B0 with a retract H
and A0 is a split extensions of Hn−1 with retract H, where Hn−1 ⊂ Z(A0).
By Lemma 5.1, A0, B0 have Property E. By Lemma 5.3, B0 satisfies (D) in
Theorem 4.3. Hence, by Theorem 4.3, P0 has Property E. ¤

Theorem 5.5. Let G be a polygonal product of groups S1, S2, . . . , Sn (n >
3), amalgamating central subgroups H1,H2, . . . ,H0, with trivial intersections.
Then G has Property E.

Proof. Let P0 be the reduced polygonal product of G as before. For i =
0, 1, . . . , n − 1, let

Pi+1 = (· · · (P0 ∗H0H1 S1) ∗H1H2 · · · ) ∗HiHi+1 Si+1.

Then G = Pn. By Theorem 5.4, P has Property E. Thus, by induction, we
can assume that P0, P1, . . . , Pi have Property E and we shall show that Pi+1 =
Pi ∗HiHi+1 Si+1 has Property E.

To prove (C1) in Theorem 2.7, let c ∈ Pi and ch = hc for all h ∈ HiHi+1.
Let

E = Si ∗Hi HiHi+1,

F = Si−1 ∗Hi−2 · · · ∗H1 S1 ∗H0 H0Hn−1 ∗Hn−1 · · · ∗Hi+2 Hi+2Hi+1 and
H = Hi−1 ∗ Hi+1,

where S0 = H0Hn−1, S−1 = Hn−1Hn−2, S−2 = Hn−2Hn−3 and the subscripts
of Hi are taken modulo n. Then Pi = E ∗H F . Since c−1hc = h for all 1 ̸= h ∈
Hi, by considering the length of c−1hc = h, c can not be of the form f1e1 · · · , of
length ≥ 1, where f1 ∈ F\H and e1 ∈ E\H. If c = e1f1 · · · of length ≥ 2 where
e1 ∈ E\H and f1 ∈ F\H, then c−1hc = · · · f−1

1 e−1
1 he1f1 · · · = · · · f−1

1 hf1 · · ·
is of length ≥ 3. Hence c−1hc ̸= h. Therefore c = e1 ∈ E = Si ∗Hi

HiHi+1.
On the other hand, we consider

E′ = HiHi+1 ∗Hi+1 Hi+1Hi+2,

F ′ = Si ∗Hi−1 · · · ∗H1 S1 ∗H0 H0Hn−1 ∗Hn−1 · · · ∗Hi+3 Hi+3Hi+2 and

H ′ = Hi ∗ Hi+2,
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where S0 = H0Hn−1 and the subscripts of Hi are taken modulo n. Then
Pi = E′ ∗H′ F ′. Since c−1h′c = h′ for all 1 ̸= h′ ∈ Hi+1, by considering the
length of c−1h′c = h′ as before, we have c = e1 ∈ E′ = HiHi+1∗Hi+1 Hi+1Hi+2.
Hence c ∈ E ∩ E′ = HiHi+1, as required. This proves the condition (C1) in
Theorem 2.7.

To prove (C2) in Theorem 2.7, let 1 ̸= a ∈ Hi−2. If a ∼Pi x for x ∈ HiHi+1,
then a = x by Lemma 4.7 [9]. Since Hi−2 ∩HiHi+1 = 1, it is impossible. Thus
{a}Pi ∩ HiHi+1 = ∅.

Suppose u−1au = h′ah, where 1 ̸= a ∈ Hi−2, u ∈ Pi, and h′, h ∈ HiHi+1.
Then a ∼Pi ahh′. Since a ∈ Hi−2, {a}Pi ∩ (Hi−1 ∗Hi+1) = ∅. Hence a ∈ F has
the minimal length 1 in its conjugacy class in Pi = E ∗H F , where E,F,H are
as above. It follows from Theorem 2.6 that ahh′ ∈ F and a ∼F ahh′. Since
a ∈ F , hh′ ∈ F ∩ HiHi+1 = Hi+1. Let F = F/M , where

M = ⟨Si−2, . . . , S1,H0Hn−1,Hn−1Hn−2, . . . ,Hi+3Hi+2⟩F ,

where S0 = H0Hn−1, S−1 = Hn−1Hn−2, S−2 = Hn−2Hn−3 and the subscripts
of Hi are taken modulo n. Then F = F/M ∼= (Si−1/Hi−2) ∗ Hi+1. In F ,
1 = a ∼F ahh′. It follows that hh′ = 1. Since hh′ ∈ Hi+1, hh′ = 1. The
condition (C2) in Theorem 2.7 holds.

Therefore Pi+1 = Pi ∗HiHi+1 Si+1 has Property E. Inductively, G = Pn has
Property E. ¤

Since polygonal products of finitely generated central subgroup separable
and conjugacy separable groups, amalgamating central subgroups with triv-
ial intersections, are conjugacy separable [9], we have the following by Theo-
rem 2.4:

Theorem 5.6. Let G be a polygonal product of finitely generated central sub-
group separable and conjugacy separable groups S1, S2, . . . , Sn (n > 3), amal-
gamating central subgroups H1,H2, . . . ,H0, with trivial intersections. Then
Out G is residually finite.

In particular we have the following:

Theorem 5.7. Let G be a polygonal product of polycyclic-by-finite groups
S1, S2, . . . , Sn (n > 3), amalgamating central subgroups H1,H2, . . . ,H0, with
trivial intersections. Then Out G is residually finite.

Corollary 5.8. Let G be a polygonal product of finitely generated abelian
groups S1, S2, . . . , Sn (n > 3), amalgamating any subgroups H1, H2, . . . ,H0,
with trivial intersections. Then Out G is residually finite.
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