DOI QR코드

DOI QR Code

DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES USING COMPLETE DIFFERENCES

  • Cho, Jung-R. (DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY) ;
  • Gould, Ronald J. (DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE EMORY UNIVERSITY)
  • Published : 2008.11.01

Abstract

The complete multipartite graph $K_{n(2t)}$ having n partite sets of size 2t, with $n\;{\geq}\;6$ and $t\;{\geq}\;1$, is shown to have a decomposition into gregarious 6-cycles, that is, the cycles which have at most one vertex from any particular partite set. Complete sets of differences of numbers in ${\mathbb{Z}}_n$ are used to produce starter cycles and obtain other cycles by rotating the cycles around the n-gon of the partite sets.

Keywords

References

  1. B. Alspach and H. Gavlas, Cycle decompositions of $K_{n}$ and $K_{n}$ − I, J. Combin. Theory Ser. B 81 (2001), no. 1, 77-99 https://doi.org/10.1006/jctb.2000.1996
  2. E. Billington and D. G. Hoffman, Decomposition of complete tripartite graphs into gregarious 4-cycles, Discrete Math. 261 (2003), no. 1-3, 87-111 https://doi.org/10.1016/S0012-365X(02)00462-4
  3. E. Billington, D. G. Hoffman, and C. A. Rodger, Resolvable gregarious cycle decompositions of complete equipartite graphs, Preprint
  4. N. J. Cavenagh and E. J. Billington, Decomposition of complete multipartite graphs into cycles of even length, Graphs Combin. 16 (2000), no. 1, 49-65 https://doi.org/10.1007/s003730050003
  5. J. R. Cho, M. J. Ferrara, R. J. Gould, and J. R. Schmitt, Difference sets generating gregarious 4-cycle decomposition of complete multipartite graphs. Preprint
  6. J. Liu, A generalization of the Oberwolfach problem and $C_{t}$-factorizations of complete equipartite graphs, J. Combin. Des. 8 (2000), no. 1, 42-49 https://doi.org/10.1002/(SICI)1520-6610(2000)8:1<42::AID-JCD6>3.0.CO;2-R
  7. M. Sajna, Cycle decompositions. III. Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), no. 1, 27-78 https://doi.org/10.1002/jcd.1027
  8. M. Sajna, On decomposing $K_{n}$ I into cycles of a fixed odd length, Discrete Math. 244 (2002), no. 1-3, 435-444 https://doi.org/10.1016/S0012-365X(01)00099-1
  9. D. Sotteau, Decomposition of $K_{m,n}$($K^{*}_{m,n}$) into cycles (circuits) of length 2$\kappa$, J. Combin. Theory Ser. B 30 (1981), no. 1, 75-81 https://doi.org/10.1016/0095-8956(81)90093-9

Cited by

  1. Some gregarious kite decompositions of complete equipartite graphs vol.313, pp.5, 2013, https://doi.org/10.1016/j.disc.2012.10.017
  2. ON DECOMPOSITIONS OF THE COMPLETE EQUIPARTITE GRAPHS Kkm(2t)INTO GREGARIOUS m-CYCLES vol.29, pp.3, 2013, https://doi.org/10.7858/eamj.2013.024
  3. A NOTE ON DECOMPOSITION OF COMPLETE EQUIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES vol.44, pp.4, 2007, https://doi.org/10.4134/BKMS.2007.44.4.709
  4. CIRCULANT DECOMPOSITIONS OF CERTAIN MULTIPARTITE GRAPHS INTO GREGARIOUS CYCLES OF A GIVEN LENGTH vol.30, pp.3, 2014, https://doi.org/10.7858/eamj.2014.021