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STRONG CONVERGENCE THEOREMS FOR INFINITE
COUNTABLE NONEXPANSIVE MAPPINGS AND IMAGE

RECOVERY PROBLEM

Yonghong Yao and Yeong-Cheng Liou∗

Abstract. In this paper, we introduce an iterative scheme given by in-
finite nonexpansive mappings in Banach spaces. We prove strong conver-
gence theorems which are connected with the problem of image recovery.

Our results enrich and complement the recent many results.

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E and let
T1, T2, . . . , TN be nonexpansive mappings from C into itself (recall that a map-
ping T : C → C is nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C).

It is well known that the so-called problem of image recovery is essentially
to find a common element of nonexpansive retracts C1, C2, . . . , CN of C with
∩N

i=1Ci ̸= ∅. It is easy to see that every nonexpansive retraction Pi of C onto
Ci is a nonexpansive mapping of C into itself. There is no doubt that the
problem of image recovery is equivalent to finding a common fixed point of
nonexpansive mappings P1, P2, . . . , PN of C into itself. Now we recall some
significant results in the literature concerning the problem of image recovery
as follows.

In 1993, Kitahara and Takahashi [4] considered and studied the problem of
image recovery by convex combinations of nonexpansive retractions in a uni-
formly convex Banach space E; see also [12]. Moreover, they proved that an
operator given by a convex combination of nonexpansive retractions in E is
asymptotically regular and the set of fixed points of the operator is equal to
the intersection of the ranges of nonexpansive retractions. Furthermore, using
the results they proved some weak convergence theorems which are connected
with the problem of image recovery. In 1997, Takahashi and Tamura [15] also
considered the feasibility problem in the situation where the constraints are in-
consistent. In 2000, Takahashi and Shimoji [14] introduced an iteration scheme,
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given by finitely many nonexpansive mappings, which generalizes Das and De-
bata’s scheme [3], and then they proved weak convergence theorems which are
connected with the problem of image recovery in a Banach space. We remark
that the problem of finding a common fixed point of nonexpansive mappings of
C into itself includes the problem of image recovery as a special case. Therefore,
there is no doubt that it is very interesting and quite significant to establish
the strong convergence or weak convergence results on the iteration schemes
for finding a common fixed point of nonexpansive mappings T1, T2, . . . , TN of
C into itself.

Recently, constructing iterative schemes for finite or infinitely many nonex-
pansive mappings T1, T2, . . . in the settings of Hilbert spaces or some special
Banach spaces have been considered by many authors. Especially, the conver-
gence problem of the following iterative scheme

xn+1 = λn+1u + (1 − λn+1)Tn+1xn, ∀n ≥ 0

has been studied extensively. See, for example [2, 6, 7, 9, 10] and the refer-
ences therein. But we note that the authors have imposed some additional
assumptions on parameters or mappings {Tn}.

The purpose of this paper is to propose a new iterative scheme for finding
common fixed points of an infinite countable nonexpansive mappings {Ti}∞i=1.
Under very mild conditions on the parameters, it is proved that the sequence
generated by our iterative scheme converges strongly to a common fixed point
of {Ti}∞i=1. Our results enrich and complement the recent many results.

2. Preliminaries

Throughout this paper, we assume that E is a reflexive Banach space, C is a
nonempty closed convex subset of E. E∗ is the dual space of E and J : E → 2E∗

is the normalized duality mapping defined by

J(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥∥f∥, ∥x∥ = ∥f∥}, x ∈ E,

where ⟨·, ·⟩ denotes the generalized duality pairing. In the sequel, we shall
denote the single-valued normalized duality mapping J by j and denote the
fixed points set of a mapping T by F (T ).

Let S = {x ∈ E : ∥x∥ = 1} denote the unit sphere of E. Recall that E is
said to have a Gâteaux differentiable norm if the limit

lim
t→0

∥x + ty∥ − ∥x∥
t

exists for each x, y ∈ E, and E is said to have a uniformly Gâteaux differentiable
norm if for each y ∈ S, the limit is attained uniformly for x ∈ S.

Recall that a Banach space E is said to be strictly convex if

∥x∥ = ∥y∥ = 1, x ̸= y implies
∥x + y∥

2
< 1.
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Let C be a nonempty closed convex subset of Banach space E. Let {Ti}∞i=1

be infinite mappings of C into itself and let α1, α2, . . . be real numbers such
that 0 ≤ αi ≤ 1 for every i ∈ N . For any n ∈ N , define a mapping Wn of C
into itself as follows:

(1)

Un,n+1 = I,

Un,n = αnTnUn,n+1 + (1 − αn)I,

Un,n−1 = αn−1Tn−1Un,n + (1 − αn−1)I,

...

Un,k = αkTkUn,k+1 + (1 − αk)I,

Un,k−1 = αk−1Tk−1Un,k + (1 − αk−1)I,

...

Un,2 = α2T2Un,3 + (1 − α2)I,

Wn = Un,1 = α1T1Un,2 + (1 − α1)I.

Such a mapping Wn is called the W -mapping generated by Tn, Tn−1, . . . , T1

and αn, αn−1, . . . , α1; see [8, 5] for more details. We can find two important
results in [8] concerning mappings Wn as follows.

Lemma 2.1 ([8, Lemma 3.2]). Let C be a nonempty closed convex subset of a
strictly convex Banach space E. Let T1, T2, . . . be nonexpansive mappings of C
into itself such that

∩∞
i=1 F (Ti) is nonempty, and let α1, α2, . . . be real numbers

such that 0 < αi ≤ b < 1 for any i ∈ N . Then, for every x ∈ C and k ∈ N ,
the limit limn→∞ Un,kx exists.

Using Lemma 2.1, one can define mapping W of C into itself as follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x

for every x ∈ C. Such a W is called the W -mapping generated by T1, T2, . . .
and α1, α2, . . .. Throughout this paper, we will assume that 0 < αi ≤ b < 1 for
every i ∈ N .

Lemma 2.2 ([8, Lemma 3.3]). Let C be a nonempty closed convex subset of a
strictly convex Banach space E. Let T1, T2, . . . be nonexpansive mappings of C
into itself such that

∩∞
i=1 F (Ti) is nonempty, and let α1, α2, . . . be real numbers

such that 0 < αi ≤ b < 1 for any i ∈ N . Then, F (W ) =
∩∞

i=1 F (Ti).

We will also make use of the following lemmas.

Lemma 2.3 ([6]). Let E be a real reflexive and strictly convex Banach space
with a uniformly Gâteaux differentiable norm. Suppose C is a nonempty closed
convex subset of E. Suppose that T : C → C is a nonexpansive mapping with
F (T ) ̸= ∅. Let {xt} is defined by xt = tu + (1 − t)Txt where u ∈ C is a fixed
point. Then as t → 0, {xt} converges strongly to some fixed point of T .
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Lemma 2.4 ([1]). Let E be a real Banach space. Then for all x, y ∈ E

(i) ∥x + y∥2 ≤ ∥x∥2 + 2⟨y, j(x + y)⟩ for all j(x + y) ∈ J(x + y);
(ii) ∥x + y∥2 ≥ ∥x∥2 + 2⟨y, j(x)⟩ for all j(x) ∈ J(x).

Lemma 2.5 ([11]). Let {xn} and {yn} be bounded sequences in a Banach space
X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn

< 1. Suppose xn+1 = (1−βn)yn +βnxn for all integers n ≥ 0 and lim supn→∞
(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0. Then, limn→∞ ∥yn − xn∥ = 0.

Lemma 2.6 ([16]). Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1 − γn)an + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn = ∞;

(2) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.
Then limn→∞ an = 0.

Let µ be a continuous linear functional on l∞ and s = (a0, a1, . . .) ∈ l∞.
We write µn(an) instead of µ(s). We call µ a Banach limit if µ satisfies ∥µ∥ =
µn(1) = 1 and µn(an+1) = µn(an) for all (a0, a1, . . .) ∈ l∞. If µ is a Banach
limit, then we have the following:

(i) for all n ≥ 1, an ≤ cn implies µn(an) ≤ µn(cn),
(ii) µn(an+r) = µn(an) for any fixed positive integer r,
(iii) lim infn→∞ an ≤ µn(an) ≤ lim supn→∞ an for all (a0, a1, . . .) ∈ l∞.

Remark 2.1. If s = (a0, a1, . . .) ∈ l∞ with an → a, then µ(s) = µn(an) = a
for any Banach limit µ by (iii). For more details on Banach limits, we refer
readers to [13].

Lemma 2.7 ([17]). Let a ∈ R be a real number and a sequence {an} ∈ l∞

satisfy the condition µn(an) ≤ a for all Banach limit µ. If lim supn→∞(an+r −
an) ≤ 0, then lim supn→∞ an ≤ a.

3. Main results

Now we state and prove the main results of this paper.

Theorem 3.1. Let E be a strictly convex and reflexive Banach space with a
uniformly Gâteaux differentiable norm, C be a nonempty closed convex subset
of E, {Tn}∞n=1 be infinite countable nonexpansive mappings from C to C such
that the common fixed points set F :=

∩∞
n=1 F (Tn) ̸= ∅. For fixed u ∈ C and

any given x0 ∈ C, let {xn} be the iterative sequence defined by

(2) xn+1 = βxn + (1 − β)Wn(λn+1u + (1 − λn+1)xn), ∀n ≥ 0,

where {λn} is a sequence in (0, 1), β is a constant in (0, 1) and Wn is the
W -mapping defined by (1). Suppose the following conditions are satisfied

(C1) limn→∞ λn = 0;
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(C2)
∑∞

n=0 λn = ∞.

Then the sequence {xn} defined by (2) converges strongly to some common fixed
point p ∈ F .

Proof. First, we claim that for all n ≥ 0,

∥xn − x∗∥ ≤ max{∥x0 − x∗∥, ∥u − x∗∥}, ∀x∗ ∈ F.

Indeed, observe that the mappings {Wn} are nonexpansive, then it follows from
(2) that

∥xn+1 − x∗∥ = ∥β(xn − x∗) + (1 − β)[Wn(λn+1u + (1 − λn+1)xn) − x∗∥
≤ β∥xn − x∗∥ + (1 − β)∥Wn(λn+1u + (1 − λn+1)xn) − x∗∥
≤ β∥xn − x∗∥ + (1 − β)[λn+1∥u − x∗∥ + (1 − λn+1)∥xn − x∗∥]
= [1 − (1 − β)λn+1]∥xn − x∗∥ + (1 − β)λn+1∥u − x∗∥
≤ max{∥xn − x∗∥, ∥u − x∗∥}.

By induction,

∥xn − x∗∥ ≤ max{∥x0 − x∗∥, ∥u − x∗∥}, ∀n ≥ 0,

and hence {xn} is bounded which leads to the boundedness of {Wnxn}.
Setting yn = λn+1u + (1 − λn+1)xn,∀n ≥ 0. From (1), we have

(3)

∥Wn+1yn+1 − Wnyn∥
≤ ∥Wn+1yn+1 − Wn+1yn∥ + ∥Wn+1yn − Wnyn∥
≤ ∥yn+1 − yn∥ + ∥α1T1Un+1,2yn − α1T1Un,2yn∥
≤ |λn+2 − λn+1|(∥u∥ + ∥xn∥) + (1 − λn+2)∥xn+1 − xn∥

+ α1∥Un+1,2yn − Un,2yn∥
= |λn+2 − λn+1|(∥u∥ + ∥xn∥) + (1 − λn+2)∥xn+1 − xn∥

+ α1∥α2T2Un+1,3yn − α2T2Un,3yn∥
≤ |λn+2 − λn+1|(∥u∥ + ∥xn∥) + (1 − λn+2)∥xn+1 − xn∥

+ α1α2∥Un+1,3yn − Un,3yn∥
≤ · · ·
≤ |λn+2 − λn+1|(∥u∥ + ∥xn∥) + (1 − λn+2)∥xn+1 − xn∥

+ M
n∏

i=1

αi,

where M ≥ 0 is a constant such that ∥Un+1,n+1yn − Un,n+1yn∥ ≤ M for all
n ≥ 0.
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Therefore, from (3), we obtain

∥Wn+1yn+1 − Wnyn∥ − ∥xn+1 − xn∥

≤ |λn+2 − λn+1|(∥u∥ + ∥xn∥) + M
n∏

i=1

αi,

which implies that (noting that (C1) and 0 < αi ≤ b < 1 for all i ∈ N)

lim sup
n→∞

(∥Wn+1yn+1 − Wnyn∥ − ∥xn+1 − xn∥) ≤ 0.

Hence, by Lemma 2.5, we have

lim
n→∞

∥Wnyn − xn∥ = 0.

Consequently,

(4) lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

(1 − β)∥Wnyn − xn∥ = 0.

For each k ∈ N , let uk be a unique element of C such that

(5) uk =
1
k

u + (1 − 1
k

)Wuk.

From Lemma 2.2 and Lemma 2.3, we obtain that

uk → p ∈ F (W ) =
∞∩

n=1

F (Tn) as k → ∞.

For every n, k ∈ N , we have

(6)

∥xn+1 − Wuk∥
= ∥β(xn − Wuk) + (1 − β)(Wnyn − Wuk)∥
≤ β∥xn − Wuk∥ + (1 − β)∥Wnyn − Wuk∥
≤ β∥xn − Wuk∥ + (1 − β)∥Wnyn − Wnuk∥ + (1 − β)∥Wnuk − Wuk∥
≤ β∥xn − Wuk∥ + (1 − β)∥yn − uk∥ + (1 − β)∥Wnuk − Wuk∥
≤ β∥xn − Wuk∥ + (1 − β)λn+1∥u − uk∥

+ (1 − β)(1 − λn+1)∥xn − uk∥ + (1 − β)∥Wnuk − Wuk∥
≤ β∥xn − Wuk∥ + (1 − β)∥xn − uk∥ + (1 − β)λn+1[∥u − uk∥

+ ∥xn − uk∥] + (1 − β)∥Wnuk − Wuk∥
= β∥xn − Wuk∥ + (1 − β)∥xn − uk∥ + γn,

where γn = (1− β)λn+1[∥u− uk∥+ ∥xn − uk∥] + (1− β)∥Wnuk −Wuk∥. Since
limn→∞ λn+1 = 0 and limn→∞ Wnuk = Wuk, then γn → 0 as n → ∞.
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From (6), we obtain

(7)

∥xn+1 − Wuk∥2 ≤ (β∥xn − Wuk∥ + (1 − β)∥xn − uk∥)2

+ γn[2(β∥xn − Wuk∥ + (1 − β)∥xn − uk∥) + γn]

= β2∥xn − Wuk∥2 + (1 − β)2∥xn − uk∥2

+ 2β(1 − β)∥xn − Wuk∥∥xn − uk∥ + σn

≤ β2∥xn − Wuk∥2 + (1 − β)2∥xn − uk∥2

+ β(1 − β)(∥xn − Wuk∥2 + ∥xn − uk∥2) + σn

= β∥xn − Wuk∥2 + (1 − β)∥xn − uk∥2 + σn,

where σn = γn[2(β∥xn − Wuk∥ + (1 − β)∥xn − uk∥) + γn] → 0 as n → ∞.
For any Banach limit µ, from (7), we obtain

(8) µn∥xn − Wuk∥2 = µn∥xn+1 − Wuk∥2 ≤ µn∥xn − uk∥2.

Noting that xn − uk = 1
k (xn − u) + (1 − 1

k )(xn − Wuk), that is

(9) (1 − 1
k

)(xn − Wuk) = (xn − uk) − 1
k

(xn − u).

It follows Lemma 2.4(ii) and (9) that
(10)

(1 − 1
k

)2∥xn − Wuk∥2 ≥ ∥xn − uk∥2 − 2
k
⟨xn − u, j(xn − uk)⟩

= ∥xn − uk∥2 − 2
k
⟨xn − uk + uk − u, j(xn − uk)⟩

= (1 − 2
k

)∥xn − uk∥2 +
2
k
⟨u − uk, j(xn − uk)⟩.

So by (8) and (10), we have

(1 − 1
k

)2µn∥xn − uk∥2 ≥ (1 − 1
k

)2µn∥xn − Wuk∥2

≥ (1 − 2
k

)µn∥xn − uk∥2 +
2
k

µn⟨u − uk, j(xn − uk)⟩,

and hence
1
k2

µn∥xn − uk∥2 ≥ 2
k

µn⟨u − uk, j(xn − uk)⟩.

This implies
1
2k

µn∥xn − uk∥2 ≥ µn⟨u − uk, j(xn − uk)⟩.

Since uk → p ∈ F (W ) =
∩∞

n=1 F (Tn) as k → ∞, from the uniformly Gâteaux
differentiability of the norm of E and the above inequality, we get

(11) µn⟨u − p, j(xn − p)⟩ ≤ 0.

On the other hand, from (4), we have

(12) lim
n→∞

|⟨u − p, j(xn+1 − p)⟩ − ⟨u − p, j(xn − p)⟩| = 0.
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Hence it follows from Lemma 2.7, (11), and (12) that

lim sup
n→∞

⟨u − p, j(xn − p)⟩ ≤ 0,

this together with limn→∞ ∥yn − xn∥ = limn→∞ λn+1∥u − xn∥ = 0 imply that

(13) lim sup
n→∞

⟨u − p, j(yn − p)⟩ ≤ 0.

Finally we prove that xn → p as n → ∞. From Lemma 2.4(i) and (2), we
have
(14)

∥xn+1 − p∥2

= ∥β(xn − p) + (1 − β)(Wnyn − p)∥2

≤ [β∥xn − p∥ + (1 − β)∥yn − p∥]2

≤ β2∥(xn − p)∥2 + (1 − β)2∥yn − p∥2 + 2β(1 − β)∥xn − p∥∥yn − p∥
≤ β2∥(xn − p)∥2 + (1 − β)2∥yn − p∥2 + β(1 − β)(∥xn − p∥2 + ∥yn − p∥2)

= β∥xn − p∥2 + (1 − β)∥yn − p∥2

≤ β∥xn − p∥2 + (1 − β)[(1 − λn+1)2∥xn − p∥2 + 2λn+1⟨u − p, j(yn − p)⟩]
= [1 − 2(1 − β)λn+1]∥xn − p∥2 + (1 − β)λ2

n+1∥xn − p∥2

+ 2(1 − β)λn+1⟨u − p, j(yn − p)⟩

= [1 − 2(1 − β)λn+1]∥xn − p∥2 + 2(1 − β)λn+1{
1
2
λn+1∥xn − p∥

+ ⟨u − p, j(yn − p)⟩}
= (1 − an)∥xn − p∥ + anbn,

where an = 2(1 − β)λn+1 and bn = 1
2λn+1∥xn − p∥ + ⟨u − p, j(yn − p)⟩. We

note that {∥xn −p∥} are bounded sequences and limn→∞ λn+1 = 0. It is easily
seen that

∑∞
n=0 an = ∞ and lim supn→∞ bn ≤ 0. Hence the conditions in

Lemma 2.6 are satisfied and so we can conclude from (14) that xn → p as
n → ∞. This completes the proof. ¤

Next, we give a strong convergence theorem which is connected with the
problem of image recovery in a Banach space setting. The proof is obvious
from Theorem 3.1 and hence will be omitted.

Theorem 3.2. Let E be a strictly convex and reflexive Banach space with
a uniformly Gâteaux differentiable norm and C be a nonempty closed convex
subset of E. Let {Cn}∞n=1 be a sequence of nonexpansive retracts of C such that
∩∞

n=1Cn is nonempty. Let Wn be the W -mapping generated by Pn, Pn−1, . . . , P1

and αn, αn−1, . . . , αn, where Pk is a nonexpansive retraction of C onto Ck. For
fixed u ∈ C and any given x0 ∈ C, let {xn} be the iterative sequence defined by

(15) xn+1 = βxn + (1 − β)Wn(λn+1u + (1 − λn+1)xn), ∀n ≥ 0,
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where {λn} is a sequence in (0, 1), β is a constant in (0, 1). Suppose the
following conditions are satisfied

(C1) limn→∞ λn = 0;
(C2)

∑∞
n=0 λn = ∞.

Then the sequence {xn} defined by (15) converges strongly to x∗ ∈ ∩∞
n=1Cn.

Remark 3.1. (i) We note that the authors in [2, 6, 7, 9, 10] have imposed some
additional assumptions on parameters {λn+1} or mappings {Tn} as follows:

(A1)
∑∞

n=1 |λn+N − λn| < ∞;
(A2) limn→∞(λn+N −λn)/λn+N = 0 or equivalently, limn→∞ λn/λn+N = 1;
(A3) limn→∞ supx∈C ∥T (Tnx) − Tnx∥ = 0;
(A4) limn→∞ supx∈C ∥Tm(Tnx) − Tnx∥ = 0.
(ii) The advantages of these results in this paper are that less restrictions

on the parameters {λn} are imposed.
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