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RIBAUCOUR TRANSFORMATIONS ON LORENTZIAN
SPACE FORMS IN LORENTZIAN SPACE FORMS

Joonsang Park

Abstract. We study Ribaucour transformations on nondegenerate lo-
cal isometric immersions of Lorentzian space forms into Lorentzian space
forms with the same sectional curvatures which have flat normal bun-

dles. They can be associated to dressing actions on the solution space of
Lorentzian Grassmannian systems.

1. Introduction

In this paper, we consider Ribaucour transformations of local nondegenerate
isometric immersions of Lorentzian space forms Nn,1(c) into Lorentzian space
forms Nn+k,1(c) which has flat normal bundles. Classically, a Ribaucour trans-
formation on a surface in R3 is defined as a sphere congruence which preserves
principal directions, and it is applied to special kinds of surfaces such as sur-
faces with constant mean curvature, surfaces with constant Gaussian curvature
and so on [3]. The definition of a Ribaucour transformation is generalized and
studied to higher dimensional submanifolds in space forms [1, 2]. In partic-
ular, Dajczer and Tojeiro treated Ribaucour transformations of Riemannian
submanifolds in pseudo-Riemannian space form [2].

On the other hand, many interesting submanifolds have special Gauss-Coda-
zzi equations in that they are solution equations [5, 6, 7, 8, 9]. In the theory
of integrable system, there is a systematic method called a dressing action to
produce a new solution from a known solution. The problem of immersions
of space forms into space forms and their transformations can be explained
by means of the theory of integrable system, too. In this vein, immersions
of Riemannian space form Nn(c) into Riemannian space form Nn+k(c) can
be associated to the solutions of Grassmannian system and some dressing ac-
tions on them are constructed in [1], and immersions of Lorentzian space form
Nn,1(c) into Lorentzian space form Nn+k,1(c) are associated to the solutions
of Lorentzian Grassmannian system [4].
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The goal of this paper is to find all the local Ribaucour transformations
of nondegenerate isometric immersions of Nn,1(c) into Nn+k,1(c) which has
flat normal bundles, to construct dressing actions on the solution space of the
Lorentzian Grassmannian system and finally to show that these actions are all
the Ribaucour transformations on these immersions.

2. Lorentzian space forms in Lorentzian space form

We denote by Rn,r the vector space Rn+r with the nondegenerate inner
product of index r,

⟨x, y⟩ = −
r∑

i=1

xiyi +
n+r∑

i=r+1

xiyi.

The simply connected complete (m + 1)-dimensional Lorentzian manifold
Nm,1(c) of the constant sectional curvature c = 0, 1 or −1 is locally isometric
to the Lorentzian space Rm,1, the Lorentzian sphere Sm,1, or the Lorentzian
hyperbolic space Hm,1, respectively, where

Sm,1 =
{
x ∈ Rm+1,1

∣∣ ⟨x, x⟩ = 1
}
,

Hm,1 =
{
x ∈ Rm,2

∣∣ ⟨x, x⟩ = −1
}
.

Suppose X : Mn,1 −→ Nn+k,1(c) is an isometric immersion of an (n + 1)-
dimensional Lorentzian manifold Mn,1 in the (n+k+1)-dimensional Lorentzian
space form Nn+k,1(c).

Definition 2.1. Mn,1 is called nondegenerate if the image of the second fun-
damental form Im IIp =

{
IIp(Y,Z) | Y,Z ∈ TpM

}
has dimension n + 1 for any

p ∈ Mn,1.

If the normal bundle is flat, then it is an elementary fact that all the shape
operators

{
Av

∣∣ v ∈ T⊥
p Nn,1(c)

}
commute for any p ∈ M . Even though

self-adjoint operators on the Lorentzian vector space are not diagonalizable in
general, it holds in the following case.

Lemma 2.2 ([4]). Suppose X : Nn,1(c) −→ Nn+k,1(c) is a local nondegenerate
isometric immersion and the normal bundle is flat. Then all the shape operators
are simultaneously diagonalizable.

Hence, for such M , it makes sense to say principal directions and it turns
out to be true that M has a principal coordinate system. More precisely,

Proposition 2.3 ([4]). Let X : Nn,1(c) −→ Nn+k,1(c) be a nondegenerate
isometric immersion with a flat normal bundle, and assume k ≥ n + 1. Then,
for a local parallel normal frame eα (n + 1 ≤ α ≤ n + k + 1), there exist a
curvature coordinate system (x1, . . . , xn+1), a map b = (b1, . . . , bn+1)t and an
(n + 1) × k matrix-valued map B1 = (bij) such that ei = 1

bi

∂
∂xi

are a principal



RIBAUCOUR TRANSFORMATIONS ON IN Nn+k,1(c) 1579

tangent frame, B1B
t
1 = In+1 and the first and second fundamental forms are

given by

(2.1) I =
n+1∑
i=1

ϵib
2
i dx2

i , II =
n+1∑
i=1

k∑
r=1

ϵibirbidx2
i ⊗ en+1+r,

where Im is the m × m identity matrix and ϵi = ⟨ei, ei⟩.

The local geometry of the immersion X in Proposition 2.3 can be described
by (2.1) as follows. For a map f , denote fxi = ∂f

∂xi
. Let ∇̄ be the Levi-Civita

connection for Nn+k,1(c) induced by the usual differential d. Put fij =
(bi)xj

bj

for i ̸= j. Then the Levi-Civita connection 1-form ω = (ωij) on M and the
shape operator Aeα =

∑n+1
i=1 ei ⊗ ωiα satisfy

(2.2)



ωij = fij dxi − ϵiϵjfji dxj ,

ωi,n+1+r = bir dxi,

(fij)xk
= fikfkj for distinct i, j, k,

(fij)xj + ϵiϵj(fji)xi + ϵj

∑
k ϵkfikfjk + c ϵj bi bj for i ̸= j,

(bir)xj = fijbjr for i ̸= j.

Throughout this paper, we will always assume that −ϵ1 = ϵ2 = · · · = ϵn+1,
i.e., e1 is a timelike direction. It is convenient to use matrix notations for (2.2).
Let J = diag(−1, 1, . . . , 1), δ = diag(dx1, . . . , dxn+1), ω = (ωij) and F = (fij),
where fii = 0. Then (2.2) becomes

(2.3)


ω = δF − JF tδJ,

δ ∧ db = ω ∧ δb,

dω + ω ∧ ω = c δb ∧ btδJ,

δ ∧ dB1 = ω ∧ δB1.

3. Ribaucour transformations

In this section, we investigate on Ribaucour transformations of isometric
immersions X : M −→ Nm,1(c). Classically, a Ribaucour transformation is
defined [3] between surfaces in the 3-dimensional Euclidean space as a sphere
congruence which preserves principal directions. This definition can be gener-
alized to submanifolds in Riemannian or Lorentzian space forms [1, 2].

Definition 3.1. Let X : M −→ Nm,1(c) and X̃ : M̃ −→ Nm,1(c) be isometric
immersions. A diffeomorphism ℓ : M −→ M̃ is called a Ribaucour transfor-
mation if X(p) ̸= X̃(ℓ(p)) for any p ∈ M and there exists a bundle isometry
℘ : T⊥M −→ T⊥M̃ covering ℓ : M −→ M̃ such that

(1) the geodesic in direction ξp ∈ T⊥
p M at p ∈ M and ℘(ξp) ∈ T⊥

ℓ(p)M̃ at
ℓ(p) ∈ M̃ intersects at a point equidistant to p and ℓ(p),
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(2) if ep is an eigenvector of the shape operator Aξ of M , then ℓ∗(ep) is an
eigenvector of A℘(ξ), and the geodesics in these directions intersect at a point
equidistant to p and ℓ(p).

Suppose X : Nn,1(c) −→ Nn+k,1(c) and X̃ : Nn,1(c) −→ Nn+k,1(c) are
nondegenerate isometric immersions with flat normal bundles, which are in a
Ribaucour transformation. Let ei and ẽi are local principal tangent frames, eα

and ẽα are local parallel normal frames for X and X̃, respectively.
Put ℘(X) = X̃ only when c ̸= 0, and ℘(ei) = ẽi, ℘(eα) = ẽα. Then the

isometry ℘ can be extended to an isometry ℘ : X∗TV −→ X̃∗TV , where V is
Rm,1, Rm+1,1, Rm,2 for c = 0, 1,−1, respectively. According to the conditions
(1) and (2) in the Definition 3.1, there exists ζ ∈ V such that

(3.1) ℘(v) − v = ⟨ζ, v⟩ (X − X̃)

for any v ∈ V . Take a nowhere vanishing function µ and a vector field η with
∥η∥2 = ϵ = ±1 such that

(3.2) X̃ = X + 2 µη.

Put η = c η0X +
∑

i ϵiηiei +
∑

α ηαeα, where ηi = ⟨ei, η⟩ and ηα = ⟨eα, η⟩.
Then by (3.1), we can prove by a direct calculation that

(3.3) η0 = −ϵµ,

(3.4) ẽA = eA − 2 ϵµηA η, 1 ≤ A ≤ n + k + 1.

As was shown for Ribaucour transformations on Riemannian submanifolds
in pseudo-Riemannian space form [2], we can prove the following theorem.

Theorem 3.2. Suppose ℓ is a local Ribaucour transformation between nonde-
generate isometric immersions X, X̃ : Nn,1(c) −→ Nn+k,1(c) with flat normal
bundles, and bi, biα and b̃i, b̃iα are the coefficients of fundamental forms for X
and X̃. Then

(3.5) X̃ = X − 2 νγ0(c γ0X +
∑

i

ϵiγiei +
∑

r

βren+1+r),

where ν−1 = c γ2
0 +

∑
i ϵiγ

2
i +

∑
r β2

r , and γ0, γi, βr satisfy

(3.6)
(γ0)xi = biγi,
(γj)xi = γifij , for i ̸= j,
(βr)xi = γibir,

where fij = (bi)xj /bj. The equations (3.6) are completely integrable. Moreover,

(3.7) b̃i = bi − 2 νγ0Γi,

(3.8) b̃ir = bir − 2 νβrΓi,

where Γi = c biγ0 + ϵi(γi)xi +
∑

j ̸=i ϵjfijγj +
∑

r birβr.
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Proof. Since X̃xi is parallel to ẽi, we have ⟨dX̃(ei), ẽA⟩ = 0 for A ̸= i. Thus
from (3.4), we get

(3.9) ηAdµ(ei) = −ϵηAηi + µ[dηA(ei) − ⟨∇̄eieA, η⟩].

Put gi = [dµ(ei) + ϵηi]/µ, then (3.9) implies

(3.10)
dµ(ei) = giµ − ϵηi

dηA(ei) = giηA + ⟨∇̄ei
eA, η⟩.

A direct calculation for ⟨∇̄eieA, η⟩ using (2.2) shows that

(3.11)
dηj(ei) = giηj + ηifij

bi
, (i ̸= j ≤ n + 1)

dηn+1+r(ei) = giηn+1+r + ηibir

bi
.

Now, we claim that the 1-form ψ =
∑

i ϵigiωi is closed, where ωi is the dual
1-form of ei, that is, ωi(ej) = ⟨ei, ej⟩ = ϵiδij . To show this, using (3.10), (3.11),
and (2.2), we have

ϵ dψ = ϵ d(dµ/µ) + d(
1
µ

∑
i

ϵiηiωi)

= −dµ

µ2
∧

∑
i

ϵiηiωi +
1
µ

∑
i

ϵidηi ∧ ωi +
1
µ

∑
i

ϵiηidωi

= − 1
µ2

(µψ − ϵ
∑

j

ϵjηjωj) ∧
∑

i

ϵiηiωi

+
1
µ

(ψ ∧
∑

j

ϵjηjωj +
∑
j,k

ϵkηkωjk ∧ ωj) +
1
µ

∑
i

ϵiηidωi

= 0.

Thus ψ = −dh/h for some h. Put γ0 = −ϵhµ, γi = hηi and βr = hηn+r+1.
Then (3.11) becomes the desired equations (3.6) and X̃, ẽi and ẽα are of the
form

X̃ = X − 2 νγ0 w,

ẽi = ei − 2 νγi w,

ẽn+1+r = en+1+r − 2 νβr w,

where w = c γ0X +
∑

i ϵiγiei +
∑

r βren+1+r, ν−1 = ∥w∥2 = c γ2
0 +

∑
i ϵiγ

2
i +∑

r β2
r . Now, a tedious calculation shows that ⟨X̃xi , ẽj⟩ = ⟨X̃xi , ẽα⟩ = 0 for

i ̸= j and α > n + 1, and thus

X̃xi = b̃iẽi.
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To find b̃i, compute

⟨X̃xi , ẽi⟩ = ⟨biei − 2(νγ0)xi w − 2νγ0 wxi , ei − 2νγi w⟩
= ϵibi − 2(νγ0)xiγi − 2νγ0[(γi)xi − ⟨∇̄Xxi

ei, w⟩]
− 2νbiγ

2
i + 4(νγ0)xiγi + 2ν2γ0γi(1/ν)xi

= ϵibi − 2νγ0[(γi)xi
− ⟨∇̄Xxi

ei, w⟩]

= ϵibi − 2ϵiνγ0[ϵi(γi)xi + c biγ0 +
∑
j ̸=i

ϵjfijγj +
∑

r

birβr]

= ϵi(bi − 2 νγ0Γi).

Hence we get b̃i = bi − 2 νγ0Γi. A similar argument, which we will omit, shows
that

(3.12) ∇̄Xxi
ẽn+1+r = b̃ir ẽi,

where b̃ir = bir − 2 νβrΓi. ¤

Put
γ = c γ0X +

∑
i

ϵiγiei and β =
∑

r

βren+1+r,

and let
∥γ∥2

n+1,c = c γ2
0 +

∑
i

ϵiγ
2
i and ∥β∥2 =

∑
r

β2
r .

We will say that X, X̃ are in a Ribaucour transformation in tangentially space-
like direction if ∥γ∥2

n+1,c > 0, and tangentially timelike direction if ∥γ∥2
n+1,c < 0.

If Γi = 0 for all i, then X and X̃ are congruent by (3.7) and (3.8), which is
not an interesting case.

Theorem 3.3. If Γi ̸= 0 in Theorem 3.2, then ν∥β∥2 = C for some constant
C. Hence when ℓ is tangentially spacelike,

X̃ = X − 2 sin ρ γ0

∥β∥2

(
c γ0X +

∑
i

ϵiγiei +
∑

r

βren+1+r

)
,

and when it is tangentially timelike,

X̃ = X − 2 cosh ρ γ0

∥β∥2

(
c γ0X +

∑
i

ϵiγiei +
∑

r

βren+1+r

)
or

X̃ = X +
2 sinh ρ γ0

∥β∥2

(
c γ0X +

∑
i

ϵiγiei +
∑

r

βren+1+r

)
for some constant ρ.
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Proof. From (3.12), we know that b̃ir are the coefficients of the second funda-
mental form of X̃ and thus

1 =
∑

r

b̃2
ir =

∑
r

(bir − 2 νβrΓi)2 = 1 − 4ν
∑

r

βrbirΓi + 4ν2∥β∥2 Γ2
i

so that

(3.13) ∥β∥2Γi = (∥γ∥2
n+1,c + ∥β∥2)

∑
r

βrbir.

Hence
(∥γ∥2

n+1,c + ∥β∥2)2 (ν∥β∥2)xi

= (∥β∥2)xi(∥γ∥2
n+1,c + ∥β∥2) − ∥β∥2(∥γ∥2

n+1,c + ∥β∥2)xi

= (∥β∥2)xi∥γ∥2
n+1,c − ∥β∥2(∥γ∥2

n+1,c)xi

= 2 ∥γ∥2
n+1,c

∑
r

βrbirγi − 2 ∥β∥2
[
c biγ0γi +

∑
j ̸=i

ϵjfijγjγi + ϵi(γi)xiγi

]
= 2γi

[
∥β∥2Γi − (∥γ∥2

n+1,c + ∥β∥2)
∑

r

βrbir

]
= 0.

Therefore, ν∥β∥2 is constant. ¤

4. Lorentzian Grassmannian systems and dressing actions

In [4], the nondegenerate local isometric immersions

X : Nn,1(c) −→ Nn+k,1(c)

with flat normal bundles are associated to the solutions of the so-called Lorent-
zian Grassmannian system. The Lorentzian Grassmannian system is a kind of
G/K system, which is developed by Terng [9]. We will first briefly review the
Lorentzian Grassmannian system and summarize how to relate such immersions
with the Lorentzian Grassmannian system, and next construct two kind of
actions on the solution space of the system to produce a new such immersion.
These actions will turn out to be all the Ribaucour transformations for X.

Let Mp×q be the set of p×q matrices, Rm = Mm×1, J = diag(−1, 1, . . . , 1),
Jc = diag(c,−1, 1, . . . , 1). Denote u = (u0, u1, . . . , um)t ∈ Rm+1. For c = 0, 1
or −1, the isometry group Gc of Nn+k,1(c) is

Gc =
{

A ∈ GL(n + k + 2, R)
∣∣∣ AJcA

t = Jc

}
,

and the Lie algebra of Gc is

Gc =
{(

0 −cξtJ
ξ Y

) ∣∣∣ Y ∈ o(n + k, 1), ξ ∈ Rn+k+1

}
.

Note that when c = 0, the first column (±1, X) of A ∈ Gc can be identified
with X ∈ Rm,1 by X ↔ (±1, X).
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Definition 4.1. Let k ≥ n + 1. The Lorentzian Grassmannian system is
a partial differential equation for (b, F,G) ∈ M(n+1)×1 × M(n+1)×(n+1) ×
M(k−n−1)×(n+1) with fii = 0 for F = (fij), such that the 1-parameter family
of connection 1-form

(4.1) θλ =


0 −cbtδJ 0 0
δb δF − JF tδJ λδ 0
0 −λδJ δF t − Fδ δGt

0 0 −Gδ 0


is flat for any λ ∈ C. Here δ = diag(dx1, . . . , dxn+1) and the matrices are
partitioned into blocks with sizes (1, n + 1, n + 1, k − n − 1).

Since (
δF t − Fδ δGt

−Gδ 0

)
is flat in (4.1), there exists a map B ∈ O(k) such that

(4.2) B dB−1 =
(

δF t − Fδ δGt

−Gδ 0

)
.

Put B = ( B1
B2

), where B1 ∈ M(n+1)×k. Taking a gauge transformation on θλ

by g =
(

1 0 0
0 In+1 0

0 0 B−1

)
gives

(4.3) g ∗ θλ =

 0 −cbtδJ 0
δb δF − JF tδJ λδB1

0 −λBt
1δJ 0

 .

We also say (b, F,B1) is an associated solution to (b, F,G) of the Lorentzian
Grassmannian system when g ∗ θλ is flat for any λ. Notice that the flatness
of g ∗ θλ is exactly the equations (2.3). From this fact, we get the following
proposition [4].

Proposition 4.2. Assume k ≥ n + 1. Let X : Nn,1(c) −→ Nn+k,1(c) be a
nondegenerate local isometric immersion with a flat normal bundle, and for a
local parallel normal frame eα the first and second fundamental forms are given
by

I =
n+1∑
i=1

ϵib
2
i dx2

i , II =
n+1∑
i=1

k∑
r=1

ϵibirbidx2
i ⊗ en+1+r.

Then for b = (b1, . . . , bn+1)t and B1 = (bir), (b, F,B1) is an associated solution
to the Lorentzian Grassmannian system.

Conversely, any associated solution (b, F,B1) to the Lorentzian Grassman-
nian system gives rise to an immersion X as above.

Now, we construct two kind of dressing actions ([10]) on the space of solu-
tions of the Lorentzian Grassmannian system, which turns out to be a Ribau-
cour transformation of Nn,1(c) in Nn+k,1(c). This kind of action was used in
[1] to get Ribaucour transformations of Nn(c) in Nn+k(c).
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Recall J = diag(−1, 1, . . . , 1), Jc = diag(c,−1, 1, . . . , 1). The reality condi-
tions for the Lorentzian Grassmannian system are

(4.4)


g(λ)Jc g(λ)t = Jc,( 1 0 0

0 In+1 0
0 0 −Ik

)
g(λ)

( 1 0 0
0 In+1 0
0 0 −Ik

)
= g(−λ),

g(λ̄) = g(λ).

A trivialization Eλ of θλ, which means E−1
λ dEλ = θλ, satisfies the reality

conditions (4.4) and is holomorphic for any λ ∈ C.
For z = (z0, z1, . . . , zn+1)t ∈ Rn+2 and w = (w1, . . . , wk)t ∈ Rk such that
∥z∥2

n+1,c = ztJcz = 1 and ∥w∥2
k = wtw = 1, let

π =
1
2

(
zztJc −i zwt

i wztJc wwt

)
.

Define qs,π(λ) for s ∈ R with s ̸= 0 and λ ∈ C by

qs,π(λ)t =
(

π +
λ + i s

λ − i s
(1 − π)

)(
π̄ +

λ − i s

λ + i s
(1 − π̄)

)
.

Then it is easy to see that qs,π(λ) is invertible, satisfies the reality conditions
(4.4), is holomorphic at λ = ∞, and

(4.5) qs,π(λ) = qs,π(−λ)−1 = I +
2s

λ2 + s2

(
−sJczzt −λJczwt

λwzt −swwt

)
.

Lemma 4.3. Let
(

z̃
i w̃

)
= E−i s(x)t

(
z

iw

)
. Then

(i) z̃ ∈ Rn+2 and w̃ ∈ Rk,
(ii) ∥z̃∥2

n+1,c = ∥w̃∥2
k,

(iii) (z̃0)xi = biz̃i,
(iv) (z̃j)xi

= z̃ifij for i ̸= j,
(v) [(Btw̃)r]xi = sz̃ibir.

Proof. (i) follows easily from the reality conditions (4.4) of qs,π(λ). From

∥z̃∥2
n+1,c − ∥w̃∥2

k =
(

E−i s(x)t

(
z

iw

) )t

Jc

(
E−i s(x)t

(
z

iw

))
=

(
z

iw

)t

Jc

(
z

iw

)
= ∥z∥2

n+1,c − ∥w∥2
k

= 0,
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we have ∥z̃∥2
n+1,c = ∥w̃∥2

k. To prove (iii), (iv) and (v), take d on the hypothesis,
then

d

(
z̃

Btw̃

)
= d

[
g

(
z̃

i w̃

)]
for g =

(
I 0
0 Bt

)
= dg · gt

(
z̃

i Btw̃

)
+ g · dE−i s(x)t ·

(
E−i s(x)t

)−1 (
z̃

i w̃

)
=

(
dg · gt + g θt

−is gt

)(
z̃

i Btw̃

)
= (g ∗ θ−is)t

(
z̃

i Btw̃

)
by (4.3).

Thus the results follow from

dz̃ =
(

0 δb
−cbtδJ ωt

)
z̃ −

(
0

sJ(δ 0)w̃

)
, d(Btw̃) = s(0 Bt

1δ)z̃.

¤

Put ẑ = z̃/∥z̃∥n+1,c, ŵ = w̃/∥w̃∥k and π̃ = 1
2 ( ẑẑtJc −i ẑŵt

i w̃ẑtJc ŵŵt ). It is easy to
show that qs,π(λ)Eλqs,π̃(λ)−1 is holomorphic in λ ∈ C by residue calculations
at λ = ±i s. Let Ẽλ = Eλqs,π̃(λ)−1, that is,

(4.6) Ẽλ = Eλ

(
I − 2s2

λ2+s2 Jcẑẑt 2sλ
λ2+s2 Jcẑŵt

− 2sλ
λ2+s2 ŵẑt I − 2s2

λ2+s2 ŵŵt

)
.

Now, from E−1
λ dEλ =

∑n+1
i=1 (aiλ + [ai, v])dxi and qs,π̃(λ) is holomorphic at

λ = ∞, we can prove by direct calculation that θ̃λ = Ẽ−1
λ dẼλ is of the form

(4.7) θ̃λ =
n+1∑
i=1

(aiλ + [ai, ṽ])dxi,

and when we write

v =
(

0 −Jcξ
t

ξ 0

)
and ṽ =

(
0 −Jcξ̃

t

ξ̃ 0

)
,

we obtain

(4.8) ξ̃ = ξ − 2
s

(
ŵẑt

)
∗ ,

where ( 0 −(Jcξt)∗
ξ∗ 0

) is the orthogonal projection of ( η −Jcξt

ξ ζ
) onto P ∩ A⊥.

By the above argument, we get

Theorem 4.4. Let (F,G, b) be a solution of the Lorentzian Grassmannian
system whose corresponding one parameter family of flat connections is θλ in
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(4.1). Then we have a new solution (F̃ , G̃, b̃) corresponding to θ̃λ in (4.7). In
particular,

(4.9)
(

b̃ F̃

0 G̃

)
=

(
b F
0 G

)
− 2

s

(
ŵẑt

)
∗,

where (cij)∗ means ci,i+1 = 0.

Hence we obtain a new solution X̃ corresponding to (F̃ , G̃, b̃) from a given
immersion X for (F,G, b). We will investigate on how X and X̃ are related
geometrically. Let Eλ and Ẽλ be trivializations corresponding to θλ and θ̃λ in
(4.1) and (4.7), respectively. Write

E0(x) =
(

A(x) 0
0 B(x)−1

)
, Ẽ0(x) =

(
Ã(x) 0

0 B̃(x)−1

)
.

From (4.6), we have

Ã = A(I − 2Jcẑẑt), B̃−1 = B−1(I − 2ŵŵt).

Put

EI
λ = Eλ

(
In+2 0

0 B

)
, ẼI

λ = Ẽλ

(
In+2 0

0 B̃

)
.

In fact, if we write EI
1 = (X, e1, . . . , en+1, en+2, . . . , en+k+1), then X is the

immersion of Nn,1(c) into Nn+k,1(c), ei (1 ≤ i ≤ n + 1) are a tangent frame
and eα (n + 2 ≤ α ≤ n + k + 1) are a parallel normal frame to X. By a direct
calculation, these trivializations are related by

(4.10) ẼI
1 = EI

1

(
I − 2

1 + s2

(
sJcẑ
Btŵ

)(
sẑt ŵtB

) )
.

Now we obtain

Theorem 4.5. Suppose X : Nn,1(c) → Nn+k,1(c) is a nondegenerate local
isometric immersion with flat normal bundle. Then the qs,π(λ) action on X

gives rise to a new immersion X̃ : Nn,1(c) → Nn+k,1(c) of the same kind, and
X and X̃ are in a Ribaucour transformation in tangentially spacelike direction.

Proof. Let Eλ be a trivialization of θλ in (4.1) and Ẽλ = Eλqs,π̃(x)(λ)−1. Write

EI
1 = (X, e1, . . . , en+1, en+2, . . . , en+k+1),

ẼI
1 = (X̃, ẽ1, . . . , ẽn+1, ẽn+2, . . . , ẽn+k+1).

By (4.10), we have

(4.11) ẼI
1 = EI

1

(
I − 2

(
cos ρ Jcẑ
sin ρBtŵ

) (
cos ρ ẑt sin ρ ŵtB

) )
,

where s = cot ρ. Put

(4.12) γ̃ = cos ρ z̃(x)t, β̃ = sin ρ w̃(x)tB, η = EI
1

(
cos ρ Jcẑ(x)
sin ρBtŵ(x)

)
.
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Then it follows from (4.11) that

(4.13)

X̃ = X − 2 γ̃0
∥w̃∥η,

ẽi = ei − 2 γ̃i

∥w̃∥η, (1 ≤ i ≤ n + 1),

ẽα = eα − 2 β̃α−n−1
∥w̃∥ η, (α ≥ n + 2).

Hence X + riei = X̃ + riẽi and X + rαeα = X̃ + rαẽα for ri = −γ̃0/γ̃i and
rα = −γ̃0/β̃α−n−1. Therefore, X and X̃ are in a Ribaucour transformation. ¤

If we write (4.13) in terms of γ̃ and β̃, then

X̃ = X − 2 sin ρ γ̃0

∥β̃∥2

(
c γ̃0X +

∑
i

ϵiγ̃iei +
∑

r

β̃ren+1+r

)
.

Theorem 4.6. Any Ribaucour transformation X̃ in tangentially spacelike di-
rection of a nondegenerate isometric immersion X : Nn,1(c) −→ Nn+k,1(c)
with flat normal bundle can be obtained by some qs,π(λ) action on X.

Proof. Let γ and β be given as in Theorem 3.2. According to Lemma 4.3 and
(3.6), (γ, β) and (γ̃, β̃) satisfy the same differential equations. Thus if we take
z = sec ρ γ(0)t and w = csc ρ β(0)tB(0)t, then they have the same initial values
and hence they are the same. ¤

Now, we construct another kind of an action. Take z = (z0, z1, . . . , zn+1)t ∈
Rn+2 and w = (w1, . . . , wk)t ∈ Rk so that ∥z∥2

n+1,c = ztJcz = −1 and ∥w∥2
k =

wtw = 1. Let

π =
1
2

(
−zztJc zwt

−wztJc wwt

)
and π′ =

1
2

(
−zztJc −zwt

wztJc wwt

)
.

Define ps,π(λ) for s ∈ R with s ̸= 0 and λ ∈ C by

ps,π(λ)t =
(

π +
λ + s

λ − s
(1 − π)

) (
π′ +

λ − s

λ + s
(1 − π′)

)
.

Then it is easy to see that ps,π(λ) is invertible, satisfies the reality conditions
(4.4), is holomorphic at λ = ∞. Also, ππ′ = π′π = 0 and

(4.14) ps,π(λ) = ps,π(−λ)−1 = I +
2s

λ2 − s2

(
−sJczzt λJczwt

−λwzt swwt

)
.

As does for qs,π(λ), the following holds for ps,π(λ) by a direct computation.

Lemma 4.7. Let
(

z̃
w̃

)
= E−s(x)t

(
z
w

)
. Then

(i) z̃ ∈ Rn+2 and w̃ ∈ Rk,
(ii) ∥z̃∥2

n+1,c = −∥w̃∥2
k,

(iii) (z̃0)xi = biz̃i,
(iv) (z̃j)xi = z̃ifij for i ̸= j,
(v) [(Btw̃)r]xi = sz̃ibir.
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Again, put ẑ = z̃/∥w̃∥k, ŵ = w̃/∥w̃∥k, Ẽλ = Eλps,π̃(λ)−1. Then,

Ẽλ = Eλ

(
I − 2s2

λ2−s2 Jcẑẑt − 2sλ
λ2−s2 Jcẑŵt

2sλ
λ2−s2 ŵẑt I − 2s2

λ2−s2 ŵŵt

)
.

Similarly to (4.8) and (4.9), we get frames

(4.15) ẼI
1 = EI

1

(
I − 2

1 − s2

(
sJcẑ
Btŵ

)(
sẑt ŵtB

) )
.

Summarizing the above argument, we get the following theorems, which we
omit the details of the proofs.

Theorem 4.8. Suppose X : Nn,1(c) → Nn+k,1(c) is a nondegenerate local
isometric immersion with flat normal bundle. Then the ps,π(λ) action on X

gives rise to a new immersion X̃ : Nn,1(c) → Nn+k,1(c) of the same kind, and
X and X̃ are in a Ribaucour transformation in tangentially timelike direction.
In particular, the immersions, tangent and normal frames are related by

X̃ = X − 2 γ̃0
∥w̃∥η,

ẽi = ei − 2 γ̃i

∥w̃∥η, (1 ≤ i ≤ n + 1),

ẽα = eα − 2 β̃α−n−1
∥w̃∥ η, (α ≥ n + 2),

where when 0 < s < 1,

s = tanh ρ, γ̃ = sinh ρ z̃(x)t, β̃ = cosh ρ w̃(x)tB, η = EI
1

(
sinh ρ Jcẑ(x)
cosh ρBtŵ(x)

)
,

and when s > 1,

s = coth ρ, γ̃ = cosh ρ z̃(x)t, β̃ = sinh ρ w̃(x)tB, η = −EI
1

(
cosh ρ Jcẑ(x)
sinh ρBtŵ(x)

)
.

Theorem 4.9. Any Ribaucour transformation X̃ in tangentially timelike direc-
tion of a nondegenerate isometric immersion X : Nn,1(c) −→ Nn+k,1(c) with
flat normal bundle can be obtained by some ps,π(λ) action on X. In particular,
X̃ is of the form

X̃ = X − 2 cosh ρ γ̃0

∥β̃∥2

(
c γ̃0X +

∑
i

ϵiγ̃iei +
∑

r

β̃ren+1+r

)
or

X̃ = X +
2 sinh ρ γ̃0

∥β̃∥2

(
c γ̃0X +

∑
i

ϵiγ̃iei +
∑

r

β̃ren+1+r

)
,

where s = tanh ρ or s = coth ρ.
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