MULTIPLIER THEOREMS IN WEIGHTED SMIRNOV SPACES

Ali Guven and Daniyal M. Israfilov

Abstract

The analogues of Marcinkiewicz multiplier theorem and Litt-lewood-Paley theorem are proved for p-Faber series in weighted Smirnov spaces defined on bounded and unbounded components of a rectifiable Jordan curve.

1. Introduction and the main results

Let Γ be a rectifiable Jordan curve in the complex plane \mathbb{C}, and let $G:=\operatorname{Int} \Gamma$, $G^{-}:=\operatorname{Ext} \Gamma$. Without loss of generality we assume that $0 \in G$. Let also

$$
\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}, \quad \mathbb{T}:=\partial \mathbb{D}, \quad \mathbb{D}^{-}:=\mathbb{C} \backslash \overline{\mathbb{D}}
$$

We denote by φ and φ_{1} the conformal mappings of G^{-}and G onto \mathbb{D}^{-}, respectively, normalized by

$$
\varphi(\infty)=\infty, \quad \lim _{z \rightarrow \infty} \frac{\varphi(z)}{z}>0
$$

and

$$
\varphi_{1}(0)=\infty, \quad \lim _{z \rightarrow 0} z \varphi_{1}(z)>0 .
$$

The inverse mappings of φ and φ_{1} will be denoted by ψ and ψ_{1}, respectively.
Let $1 \leq p<\infty$. A function f is said to belongs to the Smirnov space $E_{p}(G)$ if it is analytic in G and satisfies

$$
\sup _{0 \leq r<1} \int_{\Gamma_{r}}|f(z)|^{p}|d z|<\infty
$$

where Γ_{r} is the image of the circle $\{z \in \mathbb{C}:|z|=r\}$ under a conformal mapping of \mathbb{D} onto G. The functions belong to $E_{p}(G)$ have nontangential limits almost

[^0]everywhere (a.e.) on Γ, and these limit functions belong to the Lebesgue space $L_{p}(\Gamma)$. The Smirnov space $E_{p}(G)$ is a Banach space with respect to the norm
$$
\|f\|_{E_{p}(G)}:=\|f\|_{L_{p}(\Gamma)}=\left(\int_{\Gamma}|f(z)|^{p}|d z|\right)^{1 / p}
$$

The Smirnov spaces $E_{p}\left(G^{-}\right), 1 \leq p<\infty$ are defined similarly. It is known that $\varphi^{\prime} \in E_{1}\left(G^{-}\right), \varphi_{1}^{\prime} \in E_{1}(G)$ and $\psi^{\prime}, \psi_{1}^{\prime} \in E_{1}\left(\mathbb{D}^{-}\right)$. The general information about Smirnov spaces can be found in [3, pp. 168-185] and [4, pp. 438-453].

Let ω be a weight function (nonnegative, integrable function) on Γ and let $L_{p}(\Gamma, \omega)$ be the ω weighted Lebesgue space on Γ, i.e., the space of measurable functions on Γ for which

$$
\|f\|_{L_{p}(\Gamma, \omega)}:=\left(\int_{\Gamma}|f(z)|^{p} \omega(z)|d z|\right)^{1 / p}<\infty
$$

The ω-weighted Smirnov spaces $E_{p}(G, \omega)$ and $E_{p}\left(G^{-}, \omega\right)$ are defined as

$$
E_{p}(G, \omega):=\left\{f \in E_{1}(G): f \in L_{p}(\Gamma, \omega)\right\}
$$

and

$$
E_{p}\left(G^{-}, \omega\right):=\left\{f \in E_{1}\left(G^{-}\right): f \in L_{p}(\Gamma, \omega)\right\}
$$

We also define the following subspace of $E_{p}\left(G^{-}, \omega\right)$:

$$
\widetilde{E}_{p}\left(G^{-}, \omega\right):=\left\{f \in E_{p}\left(G^{-}, \omega\right): f(\infty)=0\right\}
$$

Let $1<p<\infty$. For $k=0,1,2, \ldots$, the functions $\varphi^{k}\left(\varphi^{\prime}\right)^{1 / p}$ and $\varphi_{1}^{k-2 / p}\left(\varphi_{1}^{\prime}\right)^{1 / p}$ have poles of order k at the points ∞ and 0 , respectively. Hence, there exist polynomials $F_{k, p}$ and $\widetilde{F}_{k, p}$ of degree k, and functions $E_{k, p}$ and $\widetilde{E}_{k, p}$ analytic in G^{-}and G, respectively, such that the following relations holds:

$$
\begin{aligned}
{[\varphi(z)]^{k}\left(\varphi^{\prime}(z)\right)^{1 / p} } & =F_{k, p}(z)+E_{k, p}(z), \quad z \in G^{-} \\
{\left[\varphi_{1}(z)\right]^{k-2 / p}\left(\varphi_{1}^{\prime}(z)\right)^{1 / p} } & =\widetilde{F}_{k, p}(1 / z)+\widetilde{E}_{k, p}(z), \quad z \in G \backslash\{0\}
\end{aligned}
$$

The polynomials $F_{k, p}$ and $\widetilde{F}_{k, p}(k=0,1,2, \ldots)$ are called the p-Faber polynomials for G and G^{-}, respectively. It is clear that $\widetilde{F}_{0, p}(1 / z)=0$.

It is known that the integral representations

$$
\begin{gathered}
F_{k, p}(z)=\frac{1}{2 \pi i} \int_{|w|=R} \frac{w^{k}\left(\psi^{\prime}(w)\right)^{1-1 / p}}{\psi(w)-z} d w, \quad z \in G, R \geq 1 \\
\widetilde{F}_{k, p}(1 / z)=-\frac{1}{2 \pi i} \int_{|w|=R} \frac{w^{k} w^{-2 / p}\left(\psi_{1}^{\prime}(w)\right)^{1-1 / p}}{\psi_{1}(w)-z} d w, \quad z \in G^{-}, R \geq 1
\end{gathered}
$$

and the expansions

$$
\begin{equation*}
\frac{\left(\psi^{\prime}(w)\right)^{1-1 / p}}{\psi(w)-z}=\sum_{k=0}^{\infty} \frac{F_{k, p}(z)}{w^{k+1}}, \quad z \in G, w \in \mathbb{D}^{-} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{w^{-2 / p}\left(\psi_{1}^{\prime}(w)\right)^{1-1 / p}}{\psi_{1}(w)-z}=\sum_{k=1}^{\infty}-\frac{\widetilde{F}_{k, p}(1 / z)}{w^{k+1}}, \quad z \in G^{-}, w \in \mathbb{D}^{-}, \tag{2}
\end{equation*}
$$

holds (see [6]).
Let $f \in E_{p}(G, \omega)$. Since $f \in E_{1}(G)$, by Cauchy's integral formula, we have
$f(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\varsigma)}{\varsigma-z} d \varsigma=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f(\psi(w))\left(\psi^{\prime}(w)\right)^{1 / p}\left(\psi^{\prime}(w)\right)^{1-1 / p}}{\psi(w)-z} d w, \quad z \in G$.
Hence, by taking into account (1) we can associate with f the series

$$
\begin{equation*}
f(z) \sim \sum_{k=0}^{\infty} a_{k}(f) F_{k, p}(z), \quad z \in G \tag{3}
\end{equation*}
$$

where

$$
a_{k}(f):=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f(\psi(w))\left(\psi^{\prime}(w)\right)^{1 / p}}{w^{k+1}} d w, \quad k=0,1,2, \ldots
$$

By the Cauchy formula and (2) we can also associate with $f \in \widetilde{E}_{p}\left(G^{-}, \omega\right)$ the series

$$
\begin{equation*}
f(z) \sim \sum_{k=1}^{\infty} \widetilde{a}_{k}(f) \widetilde{F}_{k, p}(1 / z), \quad z \in G^{-} \tag{4}
\end{equation*}
$$

where

$$
\widetilde{a}_{k}(f):=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f\left(\psi_{1}(w)\right)\left(\psi_{1}^{\prime}(w)\right)^{1 / p} w^{2 / p}}{w^{k+1}} d w, \quad k=1,2, \ldots
$$

The series (3) and (4) are called the p-Faber series, and the coefficients $a_{k}(f)$ and $\widetilde{a}_{k}(f)$ are called the p-Faber coefficients of the corresponding functions.

Definition 1. A rectifiable Jordan curve Γ is called a Carleson curve if the condition

$$
\sup _{z \in \Gamma} \sup _{\varepsilon>0} \frac{1}{\varepsilon}|\Gamma(z, \varepsilon)|<\infty
$$

holds, where $\Gamma(z, \varepsilon)$ is the portion of Γ in the open disk of radius ε centered at z, and $|\Gamma(z, \varepsilon)|$ its length.

Definition 2. Let $1<p<\infty$. A weight function ω belongs to the Muckenhoupt class $A_{p}(\Gamma)$ if the condition

$$
\sup _{z \in \Gamma} \sup _{\varepsilon>0}\left(\frac{1}{\varepsilon} \int_{\Gamma(z, \varepsilon)} \omega(\tau)|d \tau|\right)\left(\frac{1}{\varepsilon} \int_{\Gamma(z, \varepsilon)}[\omega(\tau)]^{-1 /(p-1)}|d \tau|\right)^{p-1}<\infty
$$

holds.
The Carleson curves and Muckenhoupt classes $A_{p}(\Gamma)$ were studied in details in [1].

We consider the sequences $\left\{\lambda_{k}\right\}_{0}^{\infty}$ of complex numbers which satisfies the following conditions for all natural numbers k and m :

$$
\begin{equation*}
\left|\lambda_{k}\right| \leq c, \quad \sum_{k=2^{m-1}}^{2^{m}-1}\left|\lambda_{k}-\lambda_{k+1}\right| \leq c \tag{5}
\end{equation*}
$$

For a given weight function ω on Γ we define two weights on \mathbb{T} by setting $\omega_{0}:=\omega \circ \psi$ and $\omega_{1}:=\omega \circ \psi_{1}$.

We shall denote by c_{1}, c_{2}, \ldots the constants (in general, different in different relations) depending only on numbers that are not important for the questions of interest.

Our main results are the following:
Theorem 1. Let Γ be a Carleson curve, $1<p<\infty, \omega \in A_{p}(\Gamma)$ and $\omega_{0} \in$ $A_{p}(\mathbb{T})$. If $f \in E_{p}(G, \omega)$ with the p-Faber series (3) and $\left\{\lambda_{k}\right\}_{0}^{\infty}$ is a sequence of complex numbers which satisfies the condition (5), then there exists a function $F \in E_{p}(G, \omega)$ which has the p-Faber series

$$
F(z) \sim \sum_{k=0}^{\infty} \lambda_{k} a_{k}(f) F_{k, p}(z), \quad z \in G
$$

and $\|F\|_{L_{p}(\Gamma, \omega)} \leq c_{1}\|f\|_{L_{p}(\Gamma, \omega)}$.
Similar theorem holds for $f \in \widetilde{E}_{p}\left(G^{-}, \omega\right)$:
Theorem 2. Let Γ be a Carleson curve, $1<p<\infty, \omega \in A_{p}(\Gamma)$ and $\omega_{1} \in A_{p}(\mathbb{T})$. If $f \in \widetilde{E}_{p}\left(G^{-}, \omega\right)$ with the p-Faber series (4) and $\left\{\lambda_{k}\right\}_{0}^{\infty}$ is a sequence of complex numbers which satisfies the condition (5), then there exists a function $F \in \widetilde{E}_{p}\left(G^{-}, \omega\right)$ which has the p-Faber series

$$
F(z) \sim \sum_{k=1}^{\infty} \lambda_{k} \widetilde{a}_{k}(f) \widetilde{F}_{k, p}(1 / z), \quad z \in G^{-}
$$

and $\|F\|_{L_{p}(\Gamma, \omega)} \leq c_{2}\|f\|_{L_{p}(\Gamma, \omega)}$.

For Fourier series in Lebesgue spaces on the interval $[0,2 \pi]$ the multiplier theorem was proved by Marcinkiewicz in [11] (see also, [16, Vol. II, p. 232]). For weighted Lebesgue spaces with Muckenhoupt weights the similar theorem can be deduced from Theorem 2 of [9]. The analogue of Theorem 1 in nonweighted Smirnov spaces was cited by V. Kokilashvili without proof in [8].

We introduce the notations

$$
\Delta_{k, p}(f)(z):=\sum_{j=2^{k-1}}^{2^{k}-1} a_{j}(f) F_{j, p}(z)
$$

and

$$
\widetilde{\Delta}_{k, p}(f)(z):=\sum_{j=2^{k-1}}^{2^{k}-1} \widetilde{a}_{j}(f) \widetilde{F}_{j, p}(1 / z)
$$

for $f \in E_{p}(G, \omega)$ and $f \in \widetilde{E}_{p}\left(G^{-}, \omega\right)$, respectively. By virtue of Theorems 1 and 2 we prove the following Littlewood-Paley type theorems:

Theorem 3. Let Γ be a Carleson curve, $1<p<\infty, \omega \in A_{p}(\Gamma)$ and $\omega_{0} \in$ $A_{p}(\mathbb{T})$. If $f \in E_{p}(G, \omega)$, then the two-sided estimate

$$
\begin{equation*}
c_{3}\|f\|_{L_{p}(\Gamma, \omega)} \leq\left\|\left(\sum_{k=0}^{\infty}\left|\Delta_{k, p}(f)\right|^{2}\right)^{1 / 2}\right\|_{L_{p}(\Gamma, \omega)} \leq c_{4}\|f\|_{L_{p}(\Gamma, \omega)} \tag{6}
\end{equation*}
$$

holds.
Theorem 4. Let Γ be a Carleson curve, $1<p<\infty, \omega \in A_{p}(\Gamma)$ and $\omega_{1} \in$ $A_{p}(\mathbb{T})$. If $f \in \widetilde{E}_{p}\left(G^{-}, \omega\right)$, then the two-sided estimate

$$
\begin{equation*}
c_{5}\|f\|_{L_{p}(\Gamma, \omega)} \leq\left\|\left(\sum_{k=0}^{\infty}\left|\widetilde{\Delta}_{k, p}(f)\right|^{2}\right)^{1 / 2}\right\|_{L_{p}(\Gamma, \omega)} \leq c_{6}\|f\|_{L_{p}(\Gamma, \omega)} \tag{7}
\end{equation*}
$$

holds.
Such theorems were firstly proved by J. E. Littlewood and R. Paley in [10] for the spaces $L_{p}(\mathbb{T}), 1<p<\infty$ (see also, [16, Vol II, pp. 222-241]) and play an important role in the various problems of approximation theory. For example, in [14], M. F. Timan obtained an improvement of the inverse approximation theorems by trigonometric polynomials in Lebesgue spaces $L_{p}(\mathbb{T}), 1<p<\infty$ by aim of the Littlewood-Paley theorems. Timan also improved the direct approximation theorem by using the same results [15]. By considering the analogue of Littlewood-Paley theorems in Smirnov spaces $E_{p}(G)$, V. Kokilashvili obtained very good results on polynomial approximation in these spaces [8]. For the spaces $L_{p}(\mathbb{T}, \omega)$, where $\omega \in A_{p}(\mathbb{T})$, the Littlewood-Paley type theorem can be obtained from Theorem 1 of [9].

In Theorems 1-4, it is assumed that Γ to be a Carleson curve and the weight functions to be Muckenhoupt weights. Because, proofs of Theorems 1-4 depend on the boundedness of the Cauchy singular operator, and the Cauchy singular operator is bounded on the space $L_{p}(\Gamma, \omega)$ if and only if Γ is a Carleson curve and $\omega \in A_{p}(\Gamma)$ (see Theorem 5).

2. Auxiliary results

Let Γ be rectifiable Jordan curve and $f \in L_{1}(\Gamma)$. The functions f^{+}and f^{-} defined by

$$
\begin{equation*}
f^{+}(z):=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\varsigma)}{\varsigma-z} d \varsigma, \quad z \in G \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{-}(z):=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\varsigma)}{\varsigma-z} d \varsigma, \quad z \in G^{-} \tag{9}
\end{equation*}
$$

are analytic in G and G^{-}, respectively, and $f^{-}(\infty)=0$.
It is known that [5, Lemma 3] if Γ is a Carleson curve and $\omega \in A_{p}(\Gamma)$, then $f^{+} \in E_{p}(G, \omega)$ and $f^{-} \in E_{p}\left(G^{-}, \omega\right)$ for $f \in L_{p}(\Gamma, \omega), 1<p<\infty$.

Since $f \in L_{1}(\Gamma)$, the limit

$$
S_{\Gamma}(f)(z):=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{\Gamma \backslash \Gamma(z, \varepsilon)} \frac{f(\varsigma)}{\varsigma-z} d \varsigma
$$

exists and is finite for almost all $z \in \Gamma$ (see [1, pp. 117-144]). $S_{\Gamma}(f)(z)$ is called the Cauchy singular integral of f at $z \in \Gamma$.

The functions f^{+}and f^{-}have nontangential limits a.e. on Γ and the formulas

$$
\begin{equation*}
f^{+}(z)=S_{\Gamma}(f)(z)+\frac{1}{2} f(z), \quad f^{-}(z)=S_{\Gamma}(f)(z)-\frac{1}{2} f(z) \tag{10}
\end{equation*}
$$

holds for almost every $z \in \Gamma[4$, p. 431]. Hence we have

$$
\begin{equation*}
f=f^{+}-f^{-} \tag{11}
\end{equation*}
$$

a.e. on Γ.

For $f \in L_{1}(\Gamma)$, we associate the function $S_{\Gamma}(f)$ taking the value $S_{\Gamma}(f)(z)$ a.e. on Γ. The linear operator S_{Γ} defined in such way is called the Cauchy singular operator. The following theorem, which is analogously deduced from David's theorem (see [2]), states the necessary and sufficient condition for boundedness of S_{Γ} in $L_{p}(\Gamma, \omega)$ (see also [1, pp. 117-144]).

Theorem 5. Let Γ be a rectifiable Jordan curve, $1<p<\infty$, and let ω be a weight function on Γ. The inequality

$$
\left\|S_{\Gamma}(f)\right\|_{L_{p}(\Gamma, \omega)} \leq c_{7}\|f\|_{L_{p}(\Gamma, \omega)}
$$

holds for every $f \in L_{p}(\Gamma, \omega)$ if and only if Γ is a Carleson curve and $\omega \in$ $A_{p}(\Gamma)$.

Let \mathcal{P} be the set of all algebraic polynomials (with no restrictions on the degree), and let $\mathcal{P}(\mathbb{D})$ be the set of traces of members of \mathcal{P} on \mathbb{D}. If we define the operators $T_{p}: \mathcal{P}(\mathbb{D}) \rightarrow E_{p}(G, \omega)$ and $\widetilde{T}_{p}: \mathcal{P}(\mathbb{D}) \rightarrow \widetilde{E}_{p}\left(G^{-}, \omega\right)$ as

$$
T_{p}(P)(z):=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{P(w)\left(\psi^{\prime}(w)\right)^{1-1 / p}}{\psi(w)-z} d w, \quad z \in G
$$

and

$$
\widetilde{T}_{p}(P)(z):=-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{P(w) w^{-2 / p}\left(\psi_{1}^{\prime}(w)\right)^{1-1 / p}}{\psi_{1}(w)-z} d w, \quad z \in G^{-}
$$

then it is clear that

$$
T_{p}\left(\sum_{k=0}^{n} \alpha_{k} w^{k}\right)=\sum_{k=0}^{n} \alpha_{k} F_{k, p}(z), \quad \widetilde{T}_{p}\left(\sum_{k=0}^{n} \alpha_{k} w^{k}\right)=\sum_{k=1}^{n} \alpha_{k} \widetilde{F}_{k, p}(1 / z) .
$$

Taking into account (8), we get

$$
T_{p}(P)\left(z^{\prime}\right)=\left[(P \circ \varphi)\left(\varphi^{\prime}\right)^{1 / p}\right]^{+}\left(z^{\prime}\right)
$$

for $z^{\prime} \in G$. Taking the limit $z^{\prime} \rightarrow z \in \Gamma$ over all nontangential paths inside Γ, we obtain by (10)

$$
T_{p}(P)(z)=\frac{1}{2}\left[(P \circ \varphi)\left(\varphi^{\prime}\right)^{1 / p}\right](z)+S_{\Gamma}\left[(P \circ \varphi)\left(\varphi^{\prime}\right)^{1 / p}\right](z)
$$

for almost all $z \in \Gamma$. Similarly, by considering (9) and taking the limit along all nontangential paths outside Γ, by (10) we get

$$
\widetilde{T}_{p}(P)(z)=\frac{1}{2}\left[\left(P \circ \varphi_{1}\right) \varphi_{1}^{-2 / p}\left(\varphi_{1}^{\prime}\right)^{1 / p}\right](z)-S_{\Gamma}\left[\left(P \circ \varphi_{1}\right) \varphi_{1}^{-2 / p}\left(\varphi_{1}^{\prime}\right)^{1 / p}\right](z)
$$

a.e. on Γ.

Therefore we can state the following theorem as a corollary of Theorem 5:
Theorem 6. Let Γ be a Carleson curve, $1<p<\infty$, and let ω be a weight function on Γ. The following assertions hold:
(a) If $\omega \in A_{p}(\Gamma)$ and $\omega_{0} \in A_{p}(\mathbb{T})$, then the linear operator

$$
T_{p}: \mathcal{P}(\mathbb{D}) \subset E_{p}\left(\mathbb{D}, \omega_{0}\right) \rightarrow E_{p}(G, \omega)
$$

is bounded.
(b) If $\omega \in A_{p}(\Gamma)$ and $\omega_{1} \in A_{p}(\mathbb{T})$, then the linear operator

$$
\widetilde{T}_{p}: \mathcal{P}(\mathbb{D}) \subset E_{p}\left(\mathbb{D}, \omega_{1}\right) \rightarrow \widetilde{E}_{p}\left(G^{-}, \omega\right)
$$

is bounded.

Hence, the operators T_{p} and \widetilde{T}_{p} can be extended as bounded linear operators to $E_{p}\left(\mathbb{D}, \omega_{0}\right)$ and $E_{p}\left(\mathbb{D}, \omega_{1}\right)$, respectively, and we have the representations

$$
T_{p}(g)(z):=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{g(w)\left(\psi^{\prime}(w)\right)^{1-1 / p}}{\psi(w)-z} d w, \quad g \in E_{p}\left(\mathbb{D}, \omega_{0}\right)
$$

and

$$
\widetilde{T}_{p}(g)(z):=-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{g(w) w^{-2 / p}\left(\psi_{1}^{\prime}(w)\right)^{1-1 / p}}{\psi_{1}(w)-z} d w, \quad g \in E_{p}\left(\mathbb{D}, \omega_{1}\right)
$$

Lemma 1. Let Γ be a Carleson curve, $1<p<\infty$, and $\omega \in A_{p}(\Gamma)$. Further let g be an analytic function in \mathbb{D}, which has the Taylor expansion $g(w)=$ $\sum_{k=0}^{\infty} \alpha_{k}(g) w^{k}$.
(a) If $g \in E_{p}\left(\mathbb{D}, \omega_{0}\right)$ and $\omega_{0} \in A_{p}(\mathbb{T})$, then $T_{p}(g)$ has the p-Faber coefficients $\alpha_{k}(g), k=0,1,2, \ldots$
(b) If $g \in E_{p}\left(\mathbb{D}, \omega_{1}\right)$ and $\omega_{0} \in A_{p}(\mathbb{T})$, then $\widetilde{T}_{p}(g)$ has the p-Faber coefficients $\alpha_{k}(g), k=0,1,2, \ldots$.

Proof. Let's prove the statement (b). The statement (a) can be proved similarly.

If we set

$$
g_{r}(w):=g(r w), \quad 0<r<1,
$$

and take into account that every function in $E_{1}(\mathbb{D})$ coincides with the Poisson integral of its boundary function, we have by [12, Theorem 10]

$$
\left\|g_{r}-g\right\|_{L_{p}\left(\mathbb{T}, \omega_{1}\right)} \rightarrow 0, \quad r \rightarrow 1^{-}
$$

and then the boundedness of the operator \widetilde{T}_{p} yields

$$
\begin{equation*}
\left\|\widetilde{T}_{p}\left(g_{r}\right)-\widetilde{T}_{p}(g)\right\|_{L_{p}(\Gamma, \omega)} \rightarrow 0, \quad r \rightarrow 1^{-} \tag{12}
\end{equation*}
$$

The series $\sum_{k=0}^{\infty} \alpha_{k}(g) r^{k} w^{k}$ converges uniformly on \mathbb{T}, hence,

$$
\begin{aligned}
\widetilde{T}_{p}\left(g_{r}\right)(z) & =-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{g_{r}(w) w^{-2 / p}\left(\psi_{1}^{\prime}(w)\right)^{1-1 / p}}{\psi_{1}(w)-z} d w \\
& =\sum_{k=0}^{\infty} \alpha_{k}(g) r^{k}\left\{-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{w^{k} w^{-2 / p}\left(\psi_{1}^{\prime}(w)\right)^{1-1 / p}}{\psi_{1}(w)-z} d w\right\} \\
& =\sum_{k=0}^{\infty} \alpha_{k}(g) r^{k} \widetilde{F}_{k, p}(1 / z)
\end{aligned}
$$

for $z \in G^{-}$. By a simple calculation one can see that

$$
\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{\widetilde{F}_{m, p}\left(\frac{1}{\psi_{1}(w)}\right) w^{2 / p}\left(\psi_{1}^{\prime}(w)\right)^{1 / p}}{w^{k+1}} d w= \begin{cases}1, & k=m \\ 0, & k \neq m\end{cases}
$$

and as a corollary of this

$$
\widetilde{a}_{k}\left(\widetilde{T}_{p}\left(g_{r}\right)\right)=\alpha_{k}(g) r^{k}, \quad k=0,1,2, \ldots
$$

Therefore,

$$
\begin{equation*}
\widetilde{a}_{k}\left(\widetilde{T}_{p}\left(g_{r}\right)\right) \rightarrow \alpha_{k}(g), \quad r \rightarrow 1^{-} . \tag{13}
\end{equation*}
$$

On the other hand, by Hölder's inequality,

$$
\begin{aligned}
& \left|\widetilde{a}_{k}\left(\widetilde{T}_{p}\left(g_{r}\right)\right)-\widetilde{a}_{k}\left(\widetilde{T}_{p}(g)\right)\right| \\
= & \left|\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{\left[\widetilde{T}_{p}\left(g_{r}\right)-\widetilde{T}_{p}(g)\right]\left(\psi_{1}(w)\right) w^{2 / p}\left(\psi_{1}^{\prime}(w)\right)^{1 / p}}{w^{k+1}} d w\right| \\
\leq & \frac{1}{2 \pi} \int_{\mathbb{T}}\left|\left(\widetilde{T}_{p}\left(g_{r}\right)-\widetilde{T}_{p}(g)\right)\left(\psi_{1}(w)\right)\right|\left|\left(\psi_{1}^{\prime}(w)\right)^{1 / p}\right||d w| \\
\leq & \frac{1}{2 \pi}\left(\int_{\mathbb{T}}\left|\left(\widetilde{T}_{p}\left(g_{r}\right)-\widetilde{T}_{p}(g)\right)\left(\psi_{1}(w)\right)\right|^{p} \omega\left(\psi_{1}(w)\right)\left|\psi_{1}^{\prime}(w)\right||d w|\right)^{1 / p} \\
& \times\left(\int_{\mathbb{T}}\left[\omega\left(\psi_{1}(w)\right)\right]^{-1 / p-1}|d w|\right)^{1-1 / p} \\
= & \frac{1}{2 \pi}\left\|\widetilde{T}_{p}\left(g_{r}\right)-\widetilde{T}_{p}(g)\right\|_{L_{p}(\Gamma, \omega)}\left(\int_{\mathbb{T}}\left[\omega_{1}(w)\right]^{-1 / p-1}|d w|\right)^{1-1 / p}
\end{aligned}
$$

and by (12)

$$
\widetilde{a}_{k}\left(\widetilde{T}_{p}\left(g_{r}\right)\right) \rightarrow \widetilde{a}_{k}\left(\widetilde{T}_{p}(g)\right)
$$

as $r \rightarrow 1^{-}$. This and (13) yield that

$$
\widetilde{a}_{k}\left(\widetilde{T}_{p}(g)\right)=\alpha_{k}(g), \quad k=0,1,2, \ldots
$$

which proves the part (b) of Lemma 1.

3. Proofs of the main results

We need the following lemma to prove Theorem 1 and Theorem 2.
Lemma 2. Let $\omega \in A_{p}(\mathbb{T}), 1<p<\infty$, and let $\left\{\lambda_{k}\right\}_{0}^{\infty}$ be a sequence which satisfies the condition (5). If the function $g \in E_{p}(\mathbb{D}, \omega)$ has the Taylor series

$$
g(w)=\sum_{k=0}^{\infty} \alpha_{k}(g) w^{k}, \quad w \in \mathbb{D}
$$

then there exists a function $g^{*} \in E_{p}(\mathbb{D}, \omega)$ which has the Taylor series

$$
g^{*}(w)=\sum_{k=0}^{\infty} \lambda_{k} \alpha_{k}(g) w^{k}, \quad w \in \mathbb{D}
$$

and satisfies $\left\|g^{*}\right\|_{L_{p}(\mathbb{T}, \omega)} \leq c_{8}\|g\|_{L_{p}(\mathbb{T}, \omega)}$.
Proof. Let $c_{k}(g)(k=\ldots,-1,0,1, \ldots)$ denote the Fourier coefficients of the boundary function of g. By Theorem 3.4 in [3, p. 38] we have

$$
c_{k}(g)=\left\{\begin{array}{cc}
\alpha_{k}(g), & k \geq 0 \\
0, & k<0
\end{array}\right.
$$

By Theorem 2 of [9], there is a function $h \in L_{p}(\mathbb{T}, \omega)$ with Fourier coefficients $c_{k}(h)=\lambda_{k} c_{k}(g)$ and $\|h\|_{L_{p}(\mathbb{T}, \omega)} \leq c_{9}\|g\|_{L_{p}(\mathbb{T}, \omega)}$. If we take $g^{*}:=h^{+}$, then $g^{*} \in E_{p}(\mathbb{D}, \omega)$. For Taylor coefficients of g^{*}, we have by (11)

$$
\begin{aligned}
\alpha_{k}\left(g^{*}\right) & =\alpha_{k}\left(h^{+}\right)=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{h^{+}(w)}{w^{k+1}} d w=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{h(w)}{w^{k+1}} d w+\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{h^{-}(w)}{w^{k+1}} d w \\
& =\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{h(w)}{w^{k+1}} d w=c_{k}(h)=\lambda_{k} c_{k}(g)=\lambda_{k} \alpha_{k}(g)
\end{aligned}
$$

for $k=0,1,2, \ldots$ On the other hand,

$$
\left\|g^{*}\right\|_{L_{p}(\mathbb{T}, \omega)}=\left\|h^{+}\right\|_{L_{p}(\mathbb{T}, \omega)} \leq c_{10}\|h\|_{L_{p}(\mathbb{T}, \omega)} \leq c_{11}\|g\|_{L_{p}(\mathbb{T}, \omega)}
$$

and the lemma is proved.
We set for $f \in E_{p}(G, \omega)$

$$
f_{0}(w):=f(\psi(w))\left(\psi^{\prime}(w)\right)^{1 / p}, \quad w \in \mathbb{T}
$$

and for $f \in \widetilde{E}_{p}\left(G^{-}, \omega\right)$

$$
f_{1}(w):=f\left(\psi_{1}(w)\right)\left(\psi_{1}^{\prime}(w)\right)^{1 / p} w^{2 / p}, \quad w \in \mathbb{T}
$$

It is clear that $f_{0} \in L_{p}\left(\mathbb{T}, \omega_{0}\right)$ and $f_{1} \in L_{p}\left(\mathbb{T}, \omega_{1}\right)$. Hence, if $\omega_{0}, \omega_{1} \in A_{p}(\mathbb{T})$, then $f_{0}^{+} \in E_{p}\left(\mathbb{D}, \omega_{0}\right), f_{0}^{-} \in E_{p}\left(\mathbb{D}^{-}, \omega_{0}\right), f_{1}^{+} \in E_{p}\left(\mathbb{D}, \omega_{1}\right), f_{1}^{-} \in E_{p}\left(\mathbb{D}^{-}, \omega_{1}\right)$.

Proof of Theorem 1. Let $f \in E_{p}(G, \omega)$. By the definitions of the coefficients $a_{k}(f)$ and f_{0} from (11), we get

$$
\begin{aligned}
a_{k}(f) & =\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}(w)}{w^{k+1}} d w=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}^{+}(w)}{w^{k+1}} d w-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}^{-}(w)}{w^{k+1}} d w \\
& =\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}^{+}(w)}{w^{k+1}} d w=\alpha_{k}\left(f_{0}^{+}\right)
\end{aligned}
$$

for $k=0,1,2, \ldots$. This means that the p-Faber coefficients of f are the Taylor coefficients of f_{0}^{+}at the origin, that is,

$$
f_{0}^{+}(w)=\sum_{k=0}^{\infty} a_{k}(f) w^{k}, \quad w \in \mathbb{D} .
$$

By Lemma 2, there is a function $F_{0} \in E_{p}\left(\mathbb{D}, \omega_{0}\right)$ which has the Taylor coefficients $\alpha_{k}\left(F_{0}\right)=\lambda_{k} a_{k}(f)$ for $k=0,1,2, \ldots$, and

$$
\left\|F_{0}\right\|_{L_{p}\left(\mathbb{T}, \omega_{0}\right)} \leq c_{12}\left\|f_{0}^{+}\right\|_{L_{p}\left(\mathbb{T}, \omega_{0}\right)}
$$

Hence, $T_{p}\left(F_{0}\right) \in E_{p}(G, \omega)$ and by Lemma 1 the p-Faber coefficients of $T_{p}\left(F_{0}\right)$ are $\alpha_{k}\left(F_{0}\right)=\lambda_{k} a_{k}(f)$, that is,

$$
T_{p}\left(F_{0}\right)(z) \sim \sum_{k=0}^{\infty} \lambda_{k} a_{k}(f) F_{k, p}(z), \quad z \in G
$$

On the other hand, boundedness of $T_{p},(10)$ and the boundedness of the Cauchy singular operator in $L_{p}\left(\mathbb{T}, \omega_{0}\right)$ yield

$$
\begin{aligned}
\left\|T_{p}\left(F_{0}\right)\right\|_{L_{p}(\Gamma, \omega)} & \leq\left\|T_{p}\right\|\left\|F_{0}\right\|_{L_{p}\left(\mathbb{T}, \omega_{0}\right)} \leq c_{13}\left\|f_{0}^{+}\right\|_{L_{p}\left(\mathbb{T}, \omega_{0}\right)} \\
& \leq c_{14}\left\|f_{0}\right\|_{L_{p}\left(\mathbb{T}, \omega_{0}\right)}=c_{14}\|f\|_{L_{p}(\Gamma, \omega)}
\end{aligned}
$$

Hence taking $F:=T_{p}\left(F_{0}\right)$ finishes the proof of Theorem 1.
Proof of Theorem 2. By considering the formula of the p-Faber coefficients of $f \in \widetilde{E}_{p}\left(G^{-}, \omega\right)$,

$$
\begin{aligned}
\widetilde{a}_{k}(f) & =\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}(w)}{w^{k+1}} d w=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}^{+}(w)}{w^{k+1}} d w-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}^{-}(w)}{w^{k+1}} d w \\
& =\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}^{+}(w)}{w^{k+1}} d w=\alpha_{k}\left(f_{1}^{+}\right)
\end{aligned}
$$

i.e., the p-Faber coefficients of f are the Taylor coefficients of f_{1}^{+}. By Lemma 2, there exists a function $F_{1} \in E_{p}\left(\mathbb{D}, \omega_{1}\right)$ such that

$$
F_{1}(w)=\sum_{k=0}^{\infty} \lambda_{k} \widetilde{a}_{k}(f) w^{k}, \quad w \in \mathbb{D}
$$

and

$$
\left\|F_{1}\right\|_{L_{p}\left(\mathbb{T}, \omega_{1}\right)} \leq c_{15}\left\|f_{1}^{+}\right\|_{L_{p}\left(\mathbb{T}, \omega_{1}\right)} .
$$

Setting $F:=\widetilde{T}_{p}\left(F_{1}\right)$, we obtain by Lemma 1

$$
F(z) \sim \sum_{k=1}^{\infty} \lambda_{k} \widetilde{a}_{k}(f) \widetilde{F}_{k, p}(1 / z), \quad z \in G^{-}
$$

and by boundedness of \widetilde{T}_{p} and (10) we obtain

$$
\begin{aligned}
\|F\|_{L_{p}(\Gamma, \omega)} & =\left\|\widetilde{T}_{p}\left(F_{1}\right)\right\|_{L_{p}(\Gamma, \omega)} \leq\left\|\widetilde{T}_{p}\right\|\left\|F_{1}\right\|_{L_{p}\left(\mathbb{T}, \omega_{1}\right)} \\
& \leq c_{15}\left\|f_{1}^{+}\right\|_{L_{p}\left(\mathbb{T}, \omega_{1}\right)} \leq c_{16}\left\|f_{1}\right\|_{L_{p}\left(\mathbb{T}, \omega_{1}\right)}=c_{16}\|f\|_{L_{p}(\Gamma, \omega)}
\end{aligned}
$$

since the singular operator is bounded in $L_{p}\left(\mathbb{T}, \omega_{1}\right)$.
Proof of Theorem 3. Let $\left\{r_{k}\right\}_{0}^{\infty}$ be the sequence of Rademacher functions and let $t \in[0,1]$ be not dyadic rational number. If we set $\lambda_{0}:=r_{0}(t)$ and

$$
\lambda_{j}:=r_{k}(t), \quad 2^{k-1} \leq j<2^{k}
$$

then the sequence $\left\{\lambda_{j}\right\}_{0}^{\infty}$ satisfies the condition (5). By Theorem 1 there exists a function $F \in E_{p}(G, \omega)$ such that

$$
F(z) \sim \sum_{j=0}^{\infty} \lambda_{j} a_{j}(f) F_{j, p}(z)=\sum_{k=0}^{\infty} r_{k}(t) \Delta_{k, p}(f)(z)
$$

and

$$
\|F\|_{L_{p}(\Gamma, \omega)} \leq c_{17}\|f\|_{L_{p}(\Gamma, \omega)}
$$

On the other hand, since

$$
F(z) \sim \sum_{k=0}^{\infty} r_{k}(t) \Delta_{k, p}(f)(z)
$$

and $\left\{\lambda_{j}\right\}_{0}^{\infty}$ satisfies (5), there is $F^{*} \in E_{p}(G, \omega)$ for which

$$
F^{*}(z) \sim \sum_{k=0}^{\infty} \lambda_{k} r_{k}(t) \Delta_{k, p}(f)(z)=\sum_{k=0}^{\infty} a_{k}(f) F_{k, p}(z)
$$

and

$$
\left\|F^{*}\right\|_{L_{p}(\Gamma, \omega)} \leq c_{18}\|F\|_{L_{p}(\Gamma, \omega)}
$$

holds. Since there is no two different functions in $E_{p}(G, \omega)$ have the same p-Faber series we have $F^{*}=f$ and hence

$$
c_{19}\|f\|_{L_{p}(\Gamma, \omega)} \leq\|F\|_{L_{p}(\Gamma, \omega)} \leq c_{17}\|f\|_{L_{p}(\Gamma, \omega)} .
$$

From this we obtain

$$
\begin{equation*}
c_{20}\|f\|_{L_{p}(\Gamma, \omega)}^{p} \leq \int_{\Gamma}\left|\sum_{k=0}^{\infty} r_{k}(t) \Delta_{k, p}(f)(z)\right|^{p} \omega(z)|d z| \leq c_{21}\|f\|_{L_{p}(\Gamma, \omega)}^{p} \tag{14}
\end{equation*}
$$

By Theorem 8.4 in [16, Vol I, p. 213] we get

$$
\begin{align*}
c_{22}\left(\sum_{k=0}^{\infty}\left|\Delta_{k, p}(f)(z)\right|^{2}\right)^{1 / 2} & \leq\left(\int_{0}^{1}\left|\sum_{k=0}^{\infty} r_{k}(t) \Delta_{k, p}(f)(z)\right|^{p} d t\right)^{1 / p} \tag{15}\\
& \leq c_{23}\left(\sum_{k=0}^{\infty}\left|\Delta_{k, p}(f)(z)\right|^{2}\right)^{1 / 2}
\end{align*}
$$

If we integrate all sides of (14) over $[0,1]$, change the order of integration and use (15) we obtain (6).

Proof of Theorem 4 is similar to that of Theorem 3.
Let Γ be a Carleson curve, $1<p<\infty$ and $\omega \in A_{p}(\Gamma)$. For $f \in L_{p}(\Gamma, \omega)$ we have $f^{+} \in E_{p}(G, \omega)$ and $f^{-} \in \widetilde{E}_{p}\left(G^{-}, \omega\right)$. Hence we can associate the series

$$
f^{+}(z) \sim \sum_{k=0}^{\infty} a_{k}\left(f^{+}\right) F_{k, p}(z), \quad z \in G
$$

and

$$
f^{-}(z) \sim \sum_{k=1}^{\infty} \widetilde{a}_{k}\left(f^{-}\right) \widetilde{F}_{k, p}(1 / z), \quad z \in G^{-}
$$

Since $f=f^{+}-f^{-}$almost everywhere on Γ, we can associate with f the formal series

$$
\begin{equation*}
f(z) \sim \sum_{k=0}^{\infty} a_{k}\left(f^{+}\right) F_{k, p}(z)-\sum_{k=1}^{\infty} \widetilde{a}_{k}\left(f^{-}\right) \widetilde{F}_{k, p}(1 / z) \tag{16}
\end{equation*}
$$

almost everywhere on Γ. This series is called the p-Faber-Laurent series of the function $f \in L_{p}(\Gamma, \omega)$ (see [6]).

We can state the following corollary of Theorem 1 and Theorem 2.
Corollary. Let Γ be a Carleson curve, $1<p<\infty, \omega \in A_{p}(\Gamma)$ and $\omega_{0}, \omega_{1} \in$ $A_{p}(\mathbb{T})$. If $f \in L_{p}(\Gamma, \omega)$ has the p-Faber-Laurent series (16) and $\left\{\lambda_{k}\right\}_{0}^{\infty}$ is a sequence of complex numbers which satisfies the condition (5), then there exists a function $F \in L_{p}(\Gamma, \omega)$ which has the p-Faber-Laurent series

$$
F(z) \sim \sum_{k=0}^{\infty} \lambda_{k} a_{k}\left(f^{+}\right) F_{k, p}(z)-\sum_{k=1}^{\infty} \lambda_{k} \widetilde{a}_{k}\left(f^{-}\right) \widetilde{F}_{k, p}(1 / z)
$$

and satisfies $\|F\|_{L_{p}(\Gamma, \omega)} \leq c_{24}\|f\|_{L_{p}(\Gamma, \omega)}$.

References

[1] A. Böttcher and Yu I. Karlovich, Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators, Progress in Mathematics, 154. Birkhauser Verlag, Basel, 1997.
[2] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. Ecole Norm. Sup. (4) 17 (1984), no. 1, 157-189.
[3] P. L. Duren, Theory of H^{p} Spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London, 1970.
[4] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translation of Mathematical Monographs, Vol.26, Providence, RI, 1969.
[5] D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class $E^{p}(G, \omega)$ and the Bieberbach polynomials, Constr. Approx. 17 (2001), no. 3, 335-351.
[6] _ Approximation by p-Faber-Laurent rational functions in the weighted Lebesgue spaces, Czechoslovak Math. J. 54(129) (2004), no. 3, 751-765.
[7] D. M. Israfilov and A. Guven, Approximation in weighted Smirnov classes, East J. Approx. 11 (2005), no. 1, 91-102.
[8] V. Kokilašhvili, A direct theorem for the approximation in the mean of analytic functions by polynomials, Dokl. Akad. Nauk SSSR 185 (1969), 749-752.
[9] D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted L^{p} spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235-254.
[10] J. E. Littlewood and R. Paley, Theorems on Fourier series and power series, Proc. London Math. Soc. 42 (1936), 52-89.
[11] J. Marcinkiewicz, Sur les Multiplicateurs des Series de Fourier, Studia Math. 8 (1939), 78-91.
[12] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[13] P. K. Suetin, Series of Faber Polynomials, Gordon and Breach Science Publishers, Amsterdam, 1998.
[14] M. F. Timan, Inverse theorems of the constructive theory of functions in L_{p} spaces $(1 \leq p \leq \infty)$, Mat. Sb. N.S. 46(88) (1958), 125-132.
[15] , On Jackson's theorem in L_{p}-spaces, Ukrain. Mat. Ž. 18 (1966), no. 1, 134-137.
[16] A. Zygmund, Trigonometric Series, Vol. I-II, Cambridge Univ. Press, 2nd edition, 1959.

Ali Guven

Department of Mathematics
Faculty of Art and Science
Balikesir University
10145, Balikesir, Turkey
E-mail address: ag_guven@yahoo.com
Daniyal M. Israfilov
Department of Mathematics
Faculty of Art and Science
Balikesir University
10145, Balikesir, Turkey
E-mail address: mdaniyal@balikesir.edu.tr

[^0]: Received June 5, 2007.
 2000 Mathematics Subject Classification. 42A45, 30E10, 41E10.
 Key words and phrases. Carleson curve, p-Faber polynomials, Muckenhoupt weight, weighted Smirnov space.

