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STRUCTURAL STABILITY OF VECTOR FIELDS WITH
ORBITAL INVERSE SHADOWING

Keonhee Lee, Zoonhee Lee, and Yong Zhang

Abstract. In this paper, we give a characterization of the structurally
stable vector fields via the notion of orbital inverse shadowing. More pre-
cisely, it is proved that the C1 interior of the set of C1 vector fields with

the orbital inverse shadowing property coincides with the set of struc-
turally stable vector fields. This fact improves the main result obtained
by K. Moriyasu et al. in [15].

1. Introduction

Structurally stable systems (both diffeomorphisms and flows) were the main
objects of interest in the global qualitative theory of dynamical systems in the
last 40 years. Now we know that structural stability for flows is equivalent to
Axiom A combined with the strong transversality condition (see [6, 25]).

One of the most important properties of a structurally stable system is the
shadowing property (also known as the pseudo orbit tracing property). The
shadowing property is the key of the analysis of such diffeomorphisms or flows.

A long time ago, various approaches were applied to show that a struc-
turally stable diffeomorphism has the shadowing property. But the fact that a
structurally stable flow has the shadowing property was proved by S. Pilyugin
recently (see [17]).

The main difficulty of the shadowing problem for a structurally stable flow is
created by the following fact specific for flows. Let p be a nonwandering point
of a structurally stable flow. Then the trajectory of p is hyperbolic. Denote
by S(p) and U(p) the corresponding “stable” and “unstable” subspaces of the
hyperbolic structure. If p1 is a rest point, and p2 belongs to a nonsingular
nonwandering trajectory, then

dim(S(p1) + U(p1)) ̸= dim(S(p2) + U(p2)).
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Hence the hyperbolic structures near rest points and near nonsingular non-
wandering trajectories are qualitatively different. Consequently the standard
shadowing approaches do not work. In fact, it was proved by C. Robinson
[22] and K. Sakai [23] that the C1 interior of the set of diffeomorphisms with
the shadowing property coincides with the set of structurally stable diffeomor-
phisms. However it is still open problem whether the above results can be
applied to the case of flows; i.e., is a flow in the C1 interior of the set of flows
(or vector fields) with the shadowing property structurally stable?

As a partial answer of the above problem, very recently, K. Lee and K. Sakai
[13] proved that every nonsingular flow (or vector field) in the C1 interior of the
set of flows (or vector fields) with the shadowing property is structurally stable.
To prove this, they used the fact that every nonsingular star flow satisfies
Axiom A and the no-cycle condition which is proved by S. Gan and L. Wen
[4]. Unfortunately, a star flow with singularities may not satisfy Axiom A as
you can see in [4].

We are going to prove that a flow (with singularities) in the C1 interior of
the set of flows with the inverse shadowing property which is a “dual” notion
of shadowing property is structurally stable.

The concept of inverse shadowing for homeomorphisms “dual” to the shad-
owing was established by R. Corless and S. Pilyugin [2], and P. Kloeden et al.
[7, 8] redefined this property using the concept of a method. Generally speak-
ing, a homeomorphism has the inverse shadowing property with respect to a
class of methods if any trajectory can be uniformly approximated with given
accuracy by a δ-pseudotrajectory generated by a method from the chosen class
if δ > 0 is sufficiently small. An appropriate choice of the class of admissible
pseudotrajectories is crucial here (see [3, 9, 18]).

It was shown by S. Pilyugin [18] that every structurally stable diffeomor-
phism has the inverse shadowing property with respect to the class of continu-
ous methods. Recently, K. Lee and Z. Lee [10] introduced the notion of inverse
shadowing for flows and showed that every expansive flow with the shadow-
ing property has the inverse shadowing property with respect to the class of
continuous methods. Moreover, Y. Han and K. Lee [5] proved that every struc-
turally stable flow has the inverse shadowing property with respect to the class
of continuous methods. Moreover, S. Pilyugin et al. [19] proved that the C1

interior of the set of diffeomorphisms having the orbital shadowing property
coincides with the set of structurally stable diffeomorphisms.

In this paper, we introduce the notion of orbital inverse shadowing for vector
fields and prove that the C1 interior of the set of vector fields with the orbital
inverse shadowing property (or inverse shadowing property) coincides with the
set of structurally stable vector fields. This fact improves the main result
obtained by K. Moriyasu et al. in [15].
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2. Preliminaries

Let M be a C∞ closed manifold and let d be the distance on M induced by
a Riemannian metric ∥ · ∥ on the tangent bundle TM . Denote by X 1(M) the
set of all C1 vector fields on M endowed with the C1 topology generated by the
C1 metric dC1 . Every X ∈ X 1(M) generates a C1 flow Xt : R×M−→M ; that
is a C1 map such that Xt : M−→M is a diffeomorphism satisfying X0(x) = x
and Xt+s(x) = Xt(Xs(x)) for all s, t ∈ R and x ∈ M .

Let δ > 0 and T > 0 be arbitrary. We say that a mapping ϕ : R−→M is a
(δ, T )-pseudotrajectory of X ∈ X 1(M) if, for any t ∈ R,

d(Xs(ϕ(t)), ϕ(s + t)) < δ

for |s| ≤ T . A mapping Ψ : R × M−→M is called a (δ, T )-method for X if, for
any x ∈ M , the map Ψx : R−→M defined by

Ψx(t) = Ψ(t, x), t ∈ R,

is a (δ, T )-pseudotrajectory of X. Ψ is said to be complete if Ψ(0, x) = x for
x ∈ M .

Note that a (δ, T )-method for X can be considered as a family of (δ, T )-
pseudotrajectories of X.

A method Ψ for X is said to be continuous if the map Ψ̃ : M−→MR given
by

Ψ̃(x)(t) = Ψ(t, x)

for x ∈ M and t ∈ R, is continuous under the compact open topology on MR,
where MR denotes the set of all functions from R into M .

The set of all complete (δ, 1)-methods [resp. complete continuous (δ, 1)-
methods] for X ∈ X 1(M) will be denoted by Ta(δ,X) [resp. Tc(δ,X)]. It is
clear that if Y ∈ X 1(M) is another vector field which is sufficiently close to X
in the C0 topology then it induces a complete continuous method for X.

Let Th(δ,X) [resp. Td(δ,X)] be the set of all complete continuous (δ, 1)-
methods for X which are induced by C1 vector fields Y with dC0(X,Y ) < δ
[resp. dC1(X,Y ) < δ ], where d0 is the C0 metric on X 1(M) such that

dC0(X,Y ) = sup
x∈M

{∥X(x) − Y (x)∥}.

We say that a vector field X ∈ X 1(M) has the inverse shadowing property
with respect to the class Tα (α = a, c, h, d) if for any ε > 0 there exists δ > 0
such that for any (δ, 1)-method Ψ ∈ Tα(δ,X) and any point x ∈ M there are
y ∈ M and αx ∈ Rep for which

d(Xαx(t)(x), Ψ(t, y)) < ε, t ∈ R,

where Rep denotes the set of all increasing homeomorphisms α mapping R onto
R with α(0) = 0 (see [5, 10]).
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3. Orbital inverse shadowing

Definition 3.1. We say that a vector field X ∈ X 1(M) has the orbital inverse
shadowing property with respect to the class Tα (α = a, c, h, d) if for any ε > 0
there exists δ > 0 such that for any (δ, 1)-method Ψ ∈ Tα(δ,X) and any point
x ∈ M there is y ∈ M for which

dH(O(x,Xt), O(y, Ψ)) < ε,

where, dH is the Hausdorff metric, O(x,Xt) = {Xt(x) : t ∈ R}, and O(y, Ψ) =
{Ψ(t, y) : t ∈ R}.

Remark 3.2. Let us denote ISα(M) by the set of vector fields on M with
the inverse shadowing property with respect to the class Tα, and OISα(M)
by the set of vector fields on M with the orbital inverse shadowing property
with respect to the class Tα, where α = a, c, h, d. We denote IS◦

α(M) [resp.
OIS◦

α(M)] by the C1 interior of the set ISα(M) [resp. OISα(M)] in X 1(M),
where α = a, c, h, d.

Clearly we have the following inclusions:

ISa(M) ⊂ ISc(M) ⊂ ISh(M) ⊂ ISd(M)∩ ∩ ∩ ∩
OISa(M) ⊂ OISc(M) ⊂ OISh(M) ⊂ OISd(M).

A vector field X ∈ X 1(M) is called structurally stable if there is a C1 neigh-
borhood U(X) of X ∈ X 1(M) such that every Y ∈ U(X) is topologically
conjugate to X.

It is proved by C. Robinson [21] that if X ∈ X 1(M) satisfies Axiom A and
the strong transversality condition, then X is structurally stable. The inverse
implication is the famous “stability conjecture” which is proved for diffeomor-
phisms by R. Mañé [14] completely and is proved for flows by S. Hayashi [6]
and L. Wen [25] completely.

The purpose of this paper is to give a characterization of the structurally
stable vector fields via the notion of orbital inverse shadowing.

The main result is the following one.

The Main Theorem. The C1 interior of the set of vector fields X ∈ X 1(M)
with the orbital inverse shadowing property with respect to the class Tc (or
Th, Td) coincides with the set of structurally stable vector fields.

We say that X ∈ X 1(M) is topologically stable in X 1(M) if for any ε > 0,
there is δ > 0 such that for any Y ∈ X 1(M) with dC0(X,Y ) < δ, there is a
semiconjugacy (h, τ) from Y to X satisfying d(h(x), x) < ε for all x ∈ M .

It follows that if X ∈ X 1(M) satisfies Axiom A and the strong transversality
condition, then X is topologically stable in X1(M) (for more details, see [21]
and [15]). As we have pointed out, the structural stable vector fields were
characterized as the set of all vector fields satisfying Axiom A and the strong
transversality condition. Therefore if X ∈ X 1(M) is structurally stable then
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it is topologically stable in X 1(M). Furthermore we can easily show that if
X ∈ X 1(M) is topologically stable then it has the inverse shadowing property
with respect to the class Th, but the converse does not hold in general as we
can see in the below.

Consequently we have the following corollary which is obtained by K. Mori-
yasu et al. in [15].

Corollary. The C1 interior of the set of topologically stable C1 vector fields
X ∈ X 1(M) is characterized as the set of all vector fields satisfying Axiom A
and the strong transversality condition.

Before giving the proof of the main theorem, we are going to construct a
vector field X ∈ X 1(M) which has the inverse shadowing property with respect
to the class Tc (Th), but it is not topologically stable.

Our construction is done through the suspension. Let f be a diffeomorphism
on M . On the set M × [0, 1], we consider the equivalence relation “∼” defined
by (x, 1) ∼ (f(x), 0) for x ∈ M . Put M̃ = M × [0, 1]/ ∼. We define a flow Sf

on M̃ by putting

Sf ((x, s), t) = (f [t+s](x), t + s − [t + s])

for (x, s) ∈ M̃ and t ∈ R, where [t] denotes the greatest integer less than or
equal to t. The flow Sf on M̃ is called the suspension flow of f .

Then we know the following fact: the suspension flow Sf of f is topologically
stable if and only if f is topologically stable, i.e., for any ε > 0, there is δ > 0
such that for any g ∈ Diff(M) with dC0(f, g) < δ, there is a semiconjugacy h
from g to f satisfying d(h(x), x) < ε for all x ∈ M , where Diff(M) is the set of
diffeomorphisms with the C1 topology (for more details, see [24]).

Note that the notion of topological stability of f ∈ Diff(M) in the above is
slightly different from the original definition of topological stability for home-
omorphisms. In the original definition, the perturbation should be a homeo-
morphism instead of a diffeomorphism. However these two notions are pairwise
equivalent if the phase space is the unit circle S1. More precisely, the following
result can be obtained by the same techniques in [26].

Lemma 3.3. Let f ∈ Diff(S1). Then the followings are pairwise equivalent.

(i) f is topologically conjugate to a Morse-Smale diffeomorphism,
(ii) f is topologically stable,
(iii) for any ε > 0, there is δ > 0 such that for any g ∈ Diff(S1) with

dC0(f, g) < δ, there is a semiconjugacy h from g to f satisfying

d(h(x), x) < ε for all x ∈ S1.

Consider the circle S1 with coordinate x ∈ [−1, 1); that is,

x ←→ eπxi
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Let f be a C1 diffeomorphism on S1 defined by

f(x) =
{

x + ϵx4 sin π
x if x ≠ 0,

0 if x = 0,

where 0 < ϵ < 1
8 . Then we can easily check that f has the shadowing property

by applying the result in [20]. On the other hand, f is not topologically stable
by Lemma 3.3. Then the suspension flow Sf of f is not topologically stable by
the above properties, and it has the inverse shadowing property with respect to
the class Tc by the following two lemmas (Lemmas 3.4 and 3.5). This implies
that the concept of topological stability for vector fields is surely stronger than
that of inverse shadowing with respect to the class Tc.

Lemma 3.4 ([1, Theorem 4.3]). Let f be a diffeomorphism on M . The sus-
pension flow Sf of f has the inverse shadowing property with respect to the
class Tc [resp. Th] if and only if f has the inverse shadowing property with
respect to the class Tc [resp. Th] (for the notion of the inverse shadowing for
diffeomorphisms, see [3]).

Lemma 3.5 ([11, Main Theorem]). For any f ∈ Diff(S1), the following state-
ments are pairwise equivalent:

(i) f has the shadowing property,
(ii) f has the inverse shadowing property with respect to the class Tc,
(iii) f has the inverse shadowing property with respect to the class Th.

Note that Lemma 3.5 does not hold in general if dim M ≥ 2 (see [3, 9]).

Let X ∗(M) be the set of X ∈ X 1(M) with the property that there is a
C1 neighborhood U(X) ⊂ X 1(M) of X such that every singularity and every
periodic orbit of Y ∈ U(X) are hyperbolic. Denote by X ♯(M) the set of vector
fields X ∈ X ∗(M) satisfying the following property: there is a C1 neighborhood
U(X) ⊂ X ∗(M) of X such that for each Y ∈ U(X), the stable manifolds and the
unstable manifolds of singularities and periodic orbits of Yt are all transversal.
Then we can see that X ∈ X ♯(M) if and only if X satisfies Axiom A and the
strong transversality condition (for more details, see [4]).

Recently, Y. Han and K. Lee [5] proved that every structurally stable vector
field has the inverse shadowing property with respect to the class Tc . Therefore
we get the following inclusions:

X ♯(M) = SS(M) ⊂ IS◦
c (M) ⊂ OIS◦

c (M) ⊂ OIS◦
d(M),

where SS(M) denotes the set of structurally stable vector fields on M .
Consequently, to prove the main theorem, it is enough to show the following

theorem. For simplicity, we will denote OIS◦
d(M) by OIS◦(M).

Theorem 3.6. OIS◦(M) ⊂ X ♯(M).

The proof of the above theorem is completed by the following three propo-
sitions. The techniques in our proof are similar to those in [15].
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Throughout this paper, let Sing(X) be the set of all singularities of X, and
let PO(Xt) be the set of all periodic orbits (which are not singularities) of the
generated flow Xt.

Proposition A. OIS◦(M) ⊂ X ∗(M).

Proposition B. Let X ∈ OIS◦(M), p ∈ Sing(X) and q ∈ Sing(X)∪PO(Xt).
Then the stable manifold of p and the unstable manifold of q are transverse.

Proposition C. Let X ∈ OIS◦(M) and let γ, γ′ ∈ PO(Xt). Then the stable
manifold of γ and the unstable manifold of γ′ are transverse.

4. Auxiliary lemmas

We say that p ∈ Sing(X) is hyperbolic if the linear map DpX : TpM −→ TpM
has no eigenvalue λ with Re(λ) = 0. For a hyperbolic singularity p, we define
the stable manifold W s(p, Xt) and the unstable manifold Wu(p,Xt) of p as
following;

W s(p,Xt) = {x ∈ M : d(Xt(x), p) → 0 as t → ∞},

Wu(p,Xt) = {x ∈ M : d(Xt(x), p) → 0 as t → −∞}.

A point x ∈ M is called a non-wandering point of X if for any neighborhood U
of x in M , there is t ≥ 1 such that Xt(U)∩U ̸= ∅. The set of all non-wandering
points of X is denoted by Ω(Xt). Clearly, Sing(X) ∪ PO(Xt) ⊂ Ω(Xt).

Hereafter, we assume that the exponential map expp : TpM(1)−→M is well
defined for all p ∈ M , where TpM(1) = {v ∈ TpM : ∥v∥ ≤ 1}. Let Bε(x) =
{y ∈ M : d(x, y) ≤ ε} (ε > 0). To prove the main theorem, we need the
following three lemmas in [15].

Lemma 4.1 ([15, Lemma 1.1]). Let X ∈ X 1(M) and p ∈ Sing(X). Then for
every C1 neighborhood U(X) ⊂ X 1(M) of X, there are δ0 > 0 and ε0 > 0 such
that if Oδ : TpM−→TpM is a linear map with ∥Oδ − DpX∥ < δ < δ0, then
there is Y δ ∈ U(X) satisfying

Y δ(x) =
{

(Dexp−1
p (x) expp) ◦ Oδ ◦ exp−1

p (x) if x ∈ Bε0/4(p),
X(x) if x /∈ Bε0(p).

Furthermore, dC1(Y δ, Y 0)−→0 as δ−→0. Here Y 0 is vector field for Oδ =
DpX.

Let X ∈ X 1(M). For every x ∈ M \ Sing(X), put

Π̂x = (SpanX(x))⊥ ⊂ TxM, Πx,r = expx(Π̂x,r) and Πx = Πx,1,

where, Π̂x,r = {v ∈ Π̂x : ∥v∥ < r} for r > 0. Then, for given x′ = Xt0(x)(t0 >
0), there are r0 > 0 and a C1 map τ : Πx,r0−→R such that

Xτ(y)(y) ∈ Πx′ (y ∈ Πx,r0) and τ(x) = t0.
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The flow Xt uniquely defines the Poincaré map f : Πx,r0−→Πx′ by

f(y) = Xτ(y)(y) for y ∈ Πx,r0 .

The map is C1 embedding whose image is interior to Πx′ if r0 is small. We de-
note the set of all C1 embeddings from Πx,r to Πx′(r > 0) by Emb1(Πx,r , Πx′)
and topologize it by using the C1 topology. If Xt(x) ̸= x for 0 < t ≤ t0 and r0

is sufficiently small, then (t, y) 7→ Xt(y) C1 embeds

{(t, y) ∈ R × Πx,r : 0 ≤ t ≤ τ(y)}
for 0 < r ≤ r0. The image

{Xt(y) : y ∈ Πx,r and 0 ≤ t ≤ τ(y)}
is called a t0-time length flow box and is denoted by Fx(Xt, r, t0). For ε > 0,
let Nε(Πx,r) be the set of all diffeomorphisms φ : Πx,r−→Πx,r such that

supp(φ) ⊂ Πx, r
2

and dC1(φ, id) < ε.

Here dC1 is the usual C1 metric, id : Πx,r−→Πx,r is the identity map and the
support of φ is the closure of the set where it differs from id.

Lemma 4.2 ([15, Lemma 1.2]). Let X ∈ X 1(M). Suppose Xt(x) ̸= x for
0 < t ≤ t0(x /∈ Sing(X)), and let f : Πx,r0−→Πx′ (x′ = Xt0(x)) be the
Poincaré map (r0 > 0 is sufficiently small). Then, for every C1 neighborhood
U(X) ⊂ X 1(M) of X and 0 < r ≤ r0, there is ε > 0 with the property that for
every φ ∈ Nε(Πx,r), there exists Y ∈ U(X) satisfying{

Y (y) = X(y) if y /∈ Fx(Xt, r, t0),
fY (y) = f ◦ φ(y) if y ∈ Πx,r.

Here fY : Πx,r−→Πx′ is the Poincaré map defined by Yt.

Remark 4.3. Under the same notation and assumption of Lemma 4.2, let Y δ ∈
U(X) be given by Lemma 4.2 for φδ ∈ Nε(Πx,r) (δ > 0). If φδ−→φ as δ−→0
with respect to the C1 topology, then by the construction of Y δ, we have
dC1(Y δ, Y )−→0 as δ−→0.

Let X ∈ X 1(M) and suppose p ∈ γ ∈ PO(Xt) (XT (p) = p, T > 0). If
f : Πp,r0−→Πp is the Poincaré map (r0 > 0), then f(p) = p. We say that γ
is hyperbolic if p is a hyperbolic fixed point of f . If γ ∈ PO(Xt) is hyperbolic,
then the stable manifold W s(γ,Xt) and the unstable manifold Wu(γ,Xt) of γ
are defined by the usual way. Let γ, γ′ ∈ PO(Xt) be hyperbolic. We say that
γ is transverse to γ′ if for any x ∈ W s(γ,Xt) ∩ Wu(γ′, Xt),

TxM = TxW s(γ,Xt) + TxWu(γ′, Xt).

Lemma 4.4 ([15, Lemma 1.3]). Let X ∈ X 1(M), p ∈ γ ∈ PO(Xt) (XT (p) =
p) and f : Πp,r0−→Πp be as above, and let U(X) ⊂ X 1(M) be a C1 neighbor-
hood of X and 0 < r ≤ r0 be given. Then there are δ0 > 0 and 0 < ε0 < r

2

such that for a linear isomorphism Oδ : Π̂p−→Π̂p with ∥Oδ − Dpf∥ < δ < δ0,
there is Y δ ∈ U(X) satisfying
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(i) Y δ(x) = X(x) if x /∈ Fp(Xt, r, T ),
(ii) p ∈ γ ∈ PO(Y δ

t ),
(iii)

gY δ(x) =
{

expp ◦ Oδ ◦ exp−1
p (x) if x ∈ Bε0/4(p) ∩ Πp,r

f(x) if x /∈ Bε0(p) ∩ Πp,r,

where gY δ : Πp,r−→Πp is the Poincaré map of Y δ
t . Furthermore, let

Y 0 be the vector field for Oδ = Dpf . Then we have
(iv) dC1(Y δ, Y 0)−→0 as δ−→0.

5. Proof of the main theorem

In this section, we will prove Propositions A-C.

Proof of Proposition A. The proof is similar to that of Proposition A in [15],
but for the sake of completeness we present it here. The proof is divided into
two cases.

Case 1. We prove the proposition for singularities.
Let X ∈ OIS◦(M). Suppose that there is an eigenvalue λ of DpX with

Re(λ) = 0 for some p ∈ Sing(X). By Lemma 4.1, for any C1 neighborhood
U(X) ⊂ OIS◦(M) of X, there are δ0 > 0 and ε0 > 0 such that for every
linear isomorphism Oδ : TpM−→TpM with ∥Oδ − DpX∥ < δ < δ0, there is
Y δ ∈ U(X) satisfying

Y δ(x) =
{

(Dexp−1
p (x) expp) ◦ Oδ ◦ exp−1

p (x) if x ∈ Bε0/4(p)
X(x) if x /∈ Bε0(p).

Let Y 0 ∈ U(X) be as above for O0 = DpX and denote Y 0 by Y . For
0 < ε < ε0

16 , let 0 < δ < min{δ0, ε} be as in the definition of OIS(M) of
Yt. Pick 0 < δ′ < δ and a linear isomorphism Oδ′ : TpM−→TpM whose
any eigenvalue has a non-zero real part such that if ∥Oδ′ − DpX∥ < δ′, then
dC1(Y δ′

, Y ) < δ. Then Y δ′

t ∈ Td(δ, Y ) and p is a hyperbolic singularity of
Y δ′

. The restriction Y δ′

t |Bε0/4(p) can be regarded as the flow induced from the
hyperbolic linear vector field Oδ′ |exp−1

p (Bε0/4(p)) with respect to the exponential

coordinates. Since dC1(Y, Y δ′
) < δ, for any x ∈ M , there is a point y ∈ M

such that

dH(O(x, Yt), O(y, Y δ′
t )) < ε.

By the existence of the λ, we can take z ∈ M such that p /∈ Bε(O(z, Yt))
⊂ Bε0/8(p) (by reducing ε if necessary). Here Bε(A) =

∪
x∈A Bε(x) for A ⊂

M . Let w be an orbital inverse shadowing point of O(z, Yt). Then we have
O(w, Y δ′

t ) ⊂ Bε(O(z, Yt)). Since Y δ′

t |Bε0/4(p) is regarded as the flow induced
from the hyperbolic linear vector field Oδ′ |exp−1

p (Bε0/4(p)), there is t ∈ R such

that Y δ′

t (w) ̸∈ Bε0/8(p), which contradicts to Bε(O(z, Yt)) ⊂ Bε0/8(p).
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Case 2. We prove the proposition for periodic orbits.
Let U(X) ⊂ OIS◦(M) be a C1 neighborhood of X and pick p ∈ γ ∈

PO(Xt)(XT (p) = p, T > 0). The flow Xt defines the Poincaré map f :
Πp,r0−→Πp, (for some r0 > 0). By assuming that there is an eigenvalue λ of
Dpf with |λ| = 1, we shall derive a contradiction. Let δ0 > 0 and 0 < ε0 < r0

be given by Lemma 4.4 for the U(X). Then, for every linear isomorphism
Oδ : Π̂p−→Π̂p with ∥Oδ − Dpf∥ < δ < δ0, there is Y δ ∈ U(X) such that

• Y δ(x) = X(x) if x /∈ Fp(Xt, r0, T ),

• gY δ(x) =
{

expp ◦ Oδ ◦ exp−1
p (x) if x ∈ Bε0/4(p) ∩ Πp,r0

f(x) if x /∈ Bε0(p) ∩ Πp,r0 ,

• dC1(Y δ, Y 0)−→0 as δ−→0.
Denote Y 0 by Y . For 0 < ε < ε0

16 , let 0 < δ < min{δ0, ε} be as in the definition
of OIS(M) of Yt. Take a 0 < δ′ < δ and a hyperbolic linear isomorphism
Oδ′ : Π̂p−→Π̂p such that if ∥Oδ′ − DpX∥ < δ′, then dC1(Y, Y δ) < δ. Then
Y δ′

t ∈ Td(δ, Y ) and γ is a hyperbolic periodic orbit of Y δ′

t . Therefore for any
x ∈ M , there is y ∈ M such that

dH(O(x, Yt), O(y, Y δ′
t )) < ε.

Note that gY δ′ (p) = p and the restriction gY δ′ |Bε0/4(p)∩Πp,r0
is regarded as

the hyperbolic linear isomorphism Oδ′ |exp−1
p (Bε0/4(p))∩Πp,r0

with respect to the
exponential coordinates. Since |λ| = 1, we may take z ∈ Πp,r0 such that

p /∈ Bε({gi
Y (z) : i ∈ Z}) ⊂ Bε0/8(p) ∩ Πp,r0 .(1)

Let w be an orbital inverse shadowing point of O(z, Yt). Set w′ = Y δ′

t′ (w) ∈
Πp,r0 , where |t′| = min{|t| : Y δ′

t (w) ∈ Πp,r0}. Since

dH(O(z, Yt), O(w, Y δ′
t )) < ε,

we have d(gi
Y δ′ (w′), Yt(z)) < ε for some t ∈ R. By the fact that gY δ′ is the

Poincaré map of the vector field Y δ′
with dC1(Y, Y δ′

) < d, we can choose
a sequence {gi

Y δ′ (w′)} ⊂ Πp,r0 such that d(gi
Y δ′ (w′), gi

Y (z)) < ε for all i ∈
Z. Since gY δ′ |Bε0/4(p)∩Πp,r0

is regarded as the hyperbolic linear isomorphism
Oδ′ |exp−1

p (Bε0/4(p))∩Πp,r0
, there is k such that gk

Y δ′ (w′) /∈ Bε0/8(p)∩Πp,r0 , which
contradicts to Bε({gi

Y (z) : i ∈ Z}) ⊂ Bε0/8(p) ∩ Πp,r0 . ¤

Before the proof of Proposition B, we give a lemma.

Lemma 5.1. Let X ∈ X 1(M). Suppose that p ∈ Sing(X) ∪ PO(Xt) and q ∈
Sing(X) ∪ PO(Xt) are hyperbolic, and p ̸= q. Let x ∈ W s(p,Xt) ∩ Wu(q,Xt).
Then there exist ε⋆ > 0 and η⋆ > 0 such that for any y ∈ Bη⋆(x) − ∆s [resp.
y ∈ Bη⋆(x) − ∆u], there exists t′ > 0 [resp. t′ < 0] satisfying

inf{d(Xt′(y), z) : z ∈ O(x,Xt)} ≥ ε⋆.
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Here ∆s [resp. ∆u] is the connected component of W s(p,Xt) [resp. Wu(q,Xt)]
in Bη⋆(x) containing x.

Proof. We will only prove the case that q and p are singularities. The proof of
the other cases are similar.

Let r0 > 0 be a small constant such that Br0(p) is a local chart about p. Let
Cu(r0/2) = {Br0(p) − Br0/2(p)} ∩ Wu

loc(p). Since x ∈ W s(p, Xt) ∩ Wu(q,Xt),
we have

Cu(r0/2) ∩ O(x,Xt) = ∅.
Thus

dH(Cu(r0/2), O(x,Xt)) > 0.

Set ε1 = dH(Cu(r0/2), O(x, Xt))/2. By the hyperbolicity of p, there exists a
neighborhood Bη1(x) of x such that for any y ∈ Bη1(x)−∆s, there exists t′ > 0
with Xt′(y) ∈ Nε1(C

u(r0/2)). Thus we have

dH(Xt′(y), O(x,Xt)) ≥ dH(Cu(r0/2), O(x,Xt)) − dH(Xt′(y), Cu(r0/2))
≥ 2ε1 − ε1 = ε1.

Similarly we can choose ε2 > 0 and η2 > 0 such that for any y ∈ Bη2(x)−∆u,
there exists t′ < 0 satisfying

dH(Xt′(y), O(x,Xt) ≥ ε2.

Let ε⋆ = min{ε1, ε2} and η⋆ = min{η1, η2}. It is easy to see that ε⋆ and η⋆

satisfy the conclusion. ¤

Let us start the proof of Proposition B.

Proof of Proposition B. Let X ∈ OIS◦(M). Suppose that x ∈ W s(p, Xt) ∩
Wu(q,Xt), p ∈ Sing(X), q ∈ Sing(X) ∪ PO(Xt) and TxM ̸= TxW s(p,Xt) +
TxWu(q,Xt). We may assume that x is very near p. Take r0 > 0 small enough
so that

• there are the Poincaré maps
f : Πx,r0−→ΠX1(x) and f ′ : ΠX−1(x),r0−→Πx,

• {Xt(x) : t < 0} ∩ Πx,r0 = ∅ and {Xt : t < −1} ∩ ΠX−1(x),r0 = ∅,
• Wu

2r0
(q,Xt) ∩ (Πx,r0 ∪ ΠX−1(x),r0) = ∅,

where Wu
2r0

(q,Xt) is the local unstable manifold of q. Let V s(x) be the con-
nected component of W s(p,Xt)∩Πx containing x, and V u(x) be the connected
component of Wu(q,Xt) ∩ Πx containing x.

Clearly, we have

0 ≤ dimV s(x) ≤ dimΠx and 0 ≤ dim V u(x) ≤ dimΠx.

If dim V s(x) = dimΠx or dimV u(x) = dimΠx, then there is nothing to prove.
Notice that Π̂x ̸= TxV s(x) + TxV u(x). We shall divide the proof into the

following two cases:

Case (1.1) dim V s(x) + dimV u(x) < dim Πx,
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Case (1.2) dim V s(x) + dimV u(x) ≥ dim Πx.

Proof for Case (1.1). Let V u
r (x) be the connected component of V u(x) ∩

Br(x) containing x, and V s
r (x) be the connected component of V s(x) ∩ Br(x)

containing x for r > 0. Choose 0 < r′ < r0
4 with the following properties:

• for every δ > 0, there exists φδ ∈ Nε(δ)(Πx,r0) satisfying

φδ(V u
r′ (x)) ∩ V s(x) = ∅,(2)

• V u
r′ (x) = [

∪
0≤t≤t1

Xt(Wu
2r0

(q,Xt))] ∩ Πx,r0 ∩ Br′(x),
where t1 > 0 is a constant with X−t1(x) ∈ Wu

r0
(q,Xt),

• V s
r′(x) = [

∪
0≤t≤t2

X−t(W s
2r0

(p,Xt))] ∩ Πx,r0 ∩ Br′(x),
where t2 > 0 is a constant with Xt2(x) ∈ W s

r0
(p,Xt),

• Br′({Xt(x) : t ≤ 0}) ∩ Πx,r0 = Br′(x) ∩ Πx,r0 .
For any small enough δ > 0, we can choose a vector field Y δ given by

Lemma 4.2 for the perturbation (2); i.e., Y δ satisfies the followings: Y δ(y) = X(y) if y /∈ Fx(Xt, r0, 1),
g(y) = f ◦ φδ(y) if y ∈ Πx,r0 ,
dC1(X,Y δ) < δ,

where g : Πx,r0−→ΠX1(x) is the Poincaré map induced by Y δ
t . We may assume

that Fx(Y δ
t , r0, 1) ∩ W s

r0
(p, Y δ

t ) = ∅ for sufficiently small r0.
For the vector field X and a point x ∈ W s(p,Xt)∩Wu(q,Xt), we choose two

numbers ε⋆ > 0 and η⋆ > 0 satisfying the conclusion of Lemma 5.1. Take ε > 0
with ε < min{ ε⋆

2 , η⋆

2 , r′

2 }. Let 0 < δ = δ(ε) < ε be the corresponding number
with respect to ε in the definition of the orbital inverse shadowing of X. Then
the vector field Y δ constructed as the above is an element of Td(δ,Xt). For
simplicity, we denote Y δ by Y . Then there is w ∈ M such that

dH(O(x,Xt), O(w, Yt)) < ε.

Since X(y) = Y (y) for y /∈ Fx(Xt, r0, 1), p is a singularity and q is also a
singularity or a periodic orbit of Yt. Thus the Yt-orbit of w passes through
Bη⋆(x). Take a point w′ ∈ O(w, Yt) ∩ Bη⋆(x) ∩ Πx,r0 . If w′ ∈ V u

r′ (x), then by
the construction of Y and by Lemma 5.1, we can find t′ > 0 such that

inf{d(Yt(w′), z) : z ∈ O(x, Xt)} ≥ ε⋆.

Therefore we have

dH(O(w, Yt), O(x,Xt)) ≥ ε⋆ > ε.

If w′ is not in V u
r0

(x), then similarly we have

dH(O(x, Xt), O(w, Yt)) ≥ ε⋆ > ε.

Consequently we get a contradiction, and so complete of the proof of Case (1.1).

Proof for Case (1.2). Take a C1 neighborhood U(X) ⊂ OIS(M) of X. Let
V s(X−1(x)) [resp. V u(X−1(x))] be the connected component of W s(p,Xt) ∩
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ΠX−1(x) [resp. Wu(q,Xt) ∩ ΠX−1(x)] containing X−1(x). Let f ′ : ΠX−1(x),r0

−→ Πx be the Poincaré map. For the above U(X), let µ = µ(U(X)) > 0 be
given by Lemma 4.2. Since

Π̂x ̸= TxV s(x) + TxV u(x) and dim V s(x) + dim V u(x) ≥ dimΠx,

there are 0 < r1 < r0
4 , φ̃ ∈ Nµ(ΠX−1(x),r0) and a submanifold V (X−1(x)) ⊂

ΠX−1(x),r0 such that
• V s(X−1(x)) ∩ Br1(X−1(x)) ⊂ V (X−1(x)),
• φ̃(V u(X−1(x)) ∩ Br1(X−1(x))) ⊂ V (X−1(x)) and

φ̃(X−1(x)) = X−1(x),
• dimV s(x) + dim V u(x) − dim Πx < dim V (X−1(x)) < dimΠX−1(x).

Let Y ∈ U(X) and g = f ′ ◦ φ̃ : ΠX−1(x),r0−→Πx (since g(X−1(x)) = x)
be given by Lemma 4.2. Let V s(x, Yt) [resp. V u(x, Yt)] be the connected
component of W s(p, Yt) ∩ Πx [resp. Wu(q, Yt) ∩ Πx] containing x. If we put
V (x, Yt) = f ′(V (X−1(x))), then we get dim V (x, Yt) < dimΠx. It is easy to
choose 0 < r2 < r0

4 satisfying

V u(x, Yt) ∩ Br2(x) ⊂ V (x, Yt) and V s(x, Yt) ∩ Br2(x) ⊂ V (x, Yt).

By the choice of r0, we can see that
• the map f : Πx,r0−→ΠX1(x) is also a Poincaré map for Yt,
• q ∈ Sing(Y ) ∪ PO(Yt),
• Xt(x) = Yt(x) for t ≤ 0.

Since Y (y) = X(y) for y /∈ FX−1(x)(Xt, r0, 1), we have

W s
2r0

(p,Xt) = W s
2r0

(p, Yt) and Wu
2r0

(q,Xt) = Wu
2r0

(q, Yt).

As in the proof of proposition B in [15], by applying Lemma 4.2 for Y and f ,
for any δ > 0 we can obtain Zδ ∈ U(X) and r′ < r2 such that

• Zδ is perturbation of φδ ∈ Nε(δ)(Πx,r0) satisfying φδ(V u
r′ (x, Yt)) ∩

V (x, Yt) = ∅,
• Zδ(y) = Y (y) if y /∈ Fx(Yt, r0, 1),
• g′(y) = f ◦ φδ(y) if y ∈ Πx,r0 ,
• dC1(Y,Zδ) < δ,

where g′ : Πx,r0−→ΠY1(x) is the Poincaré map induced by Zδ
t .

For the C1 vector field Y and x ∈ W s(p, Yt) ∩ Wu(q, Yt), we have numbers
ε⋆ > 0 and η⋆ satisfying Lemma 5.1. Choose a sufficiently small constant ε > 0
with ε < min{ ε⋆

2 , r′

2 , η⋆

2 , µ
2 }, and let 0 < δ < ε be as in the definition of the

orbital inverse shadowing of Yt. So Zδ constructed as the above is an element
of Td(δ, Yt). For simplicity, we denote Zδ by Z. By the notion of the orbital
inverse shadowing of Y , for the point x, there is a point y ∈ M such that

dH(O(x, Yt), O(y, Zt)) < ε.

By applying Lemma 5.1, we can derive a contradiction as in the Case (1.1).

This completes the proof of Proposition B. ¤
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Proof of Proposition C. Suppose that γ, γ′ ∈ PO(Xt) are hyperbolic and x ∈
W s(γ,Xt) ∩ Wu(γ′, Xt). Fix p ∈ γ (XT (p) = p), and let r0 > 0 be sufficiently
small so that we can define the Pioncaré map f : Πp,r0−→Πp. Since p is
hyperbolic, there are a Df -invariant splitting Π̂p = Es

p ⊕Eu
p and two constants

C > 0, 0 < λ < 1 such that ∥Dfm
|Es

p
∥ < Cλm and ∥Df−m

|Eu
p
∥ < Cλm for all m ≥

0. Let W σ
r (p, f) be the connected component of Wσ(γ,Xt) ∩ Πp,r containing

p for σ = s, u and 0 < r ≤ r0. Suppose that x ∈ W s
r0/2(p, f) \ intW s

r0/2(p, f),
and let T ′ > 0 be the number with f(x) = XT ′(x) and take 0 < r1 < r0

4 such
that Fp(Xt, r1, T ) ∩ Fx(Xt, r1, T

′) = ∅.
Before continuing our proof, we will cite the following result from [15].

Lemma 5.2 ([15, Lemma 4.1]). Under the above notation, for every C1 neigh-
borhood U(X) of X, there are 0 < ε0 < r0

4 and Y ∈ U(X) satisfying
(i) Y (y) = X(y) if y /∈ Fp(Xt, r1, T ) ∪ Fx(Xt, r1, T

′),
(ii) γ, γ′ ∈ PO(Yt) and YT (p) = p ∈ γ,
(iii)

g(y) =
{

expp ◦Dpf ◦ exp−1
p (y) if y ∈ Bε0/4(p) ∩ Πp,r0

f(y) if y /∈ Bε0(p) ∩ Πp,r0 ,

(iv) g(p) = p, x ∈ W s
r0

(p, g) and TxW s
r0

(p, g) = TxW s
r0

(p, f),
(v) TxWu(γ′, Yt) = TxWu(γ′, Xt).

Here g : Πp,r0−→Πp is the Poincaré map of Yt and Wσ
r0

(p, g) is the connected
component of Wσ(γ, Yt) ∩ Πp,r0 containing p (σ = s, u).

Put Eσ
x (ε)={v ∈ Eσ

x |∥v∥ ≤ ε} for ε > 0 (σ = s, u), and g ∈ Emb1(Πp,r0 ,Πp),
p = g(p) ∈ Πp and ε0 > 0 be given by Lemma 5.2. Then expp(Eσ

p ( ε0
4 )) ⊂

Wσ
r0

(p, g) and dim expp(Eσ
p ( ε0

4 )) = dimW σ
r0

(p, g) for σ = s, u since ε0 is small.
For convenience, we denote exp(Eσ

p (ε)) by W σ
ε (p, g) for σ = s, u and 0 < ε ≤ ε0

4 .
Let X ∈ OIS◦(M), suppose that γ, γ′ ∈ PO(Xt) are hyperbolic and x ∈

W s(γ,Xt) ∩ Wu(γ′, Xt). Let p ∈ γ (XT (p) = p, T > 0) and f : Πp,r0−→Πp

(r0 > 0) be as before. We may assume that
• x ∈ W s

r0/2(p, f) \ intW s
r0/2(p, f),

• Wu
2r0

(γ′, Xt) ∩ Πp,r0 .
Here, Wu

r0
(γ′, Xt) is the local unstable manifold of γ′. Fix a C1 neighborhood

U(X) ⊂ OIS◦(M) of X, and let 0 < ε0 < r0
4 , Y ∈ U(X) and g be given

by Lemma 5.2. Thus TxW s
r0

(p, g) = TxW s
r0

(p, f), Wu
2r0

(γ′, Xt) = Wu
2r0

(γ′, Yt),
and Xt(x) = Yt(x) for all t ≤ 0. Clearly, 1 ≤ dim W s

r0
(p, g) ≤ dimΠp and 1 ≤

dim(Wu
r0

(γ′, Yt)∩Πp) ≤ dimΠp. If dim W s
r0

(p, g) = dimΠp or dim(Wu
r0

(γ′, Yt)∩
Πp = dimΠp, then the conclusion is clear.

Pick l > 0 so large that gl−1(x) ∈ W s
ε0/8(p, g) and let Cu(gl(x)) be the

connected component of Wu(γ′, Yt) ∩ Πp containing gl(x). To simplify the
notation, denote gl(x) by x. Then we get

exp−1
p (Cu(x)) ⊂ Π̂p and TxCu(x) = Tx(Wu(γ′, Yt) ∩ Πp).
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For a linear subspace E of Π̂p and ν > 0, let

Eν(x) = {v + exp−1
p (x)|v ∈ E with ∥v∥ ≤ ν}

be a piece of an affine space running parallel to E. Let T ′′, T ′′′ > 0 be num-
bers with YT ′′(g−1(x)) = x and YT ′′′(x) = g(x), respectively. Choose a linear
subspace E′ ⊂ Π̂p and 0 < ν0 < ε0/8 such that

• for every 0 < ν ≤ ν0, expp(E′
ν(x)) ⊂ Bε0/4(p),

• Tx expp(E′
ν0

(x)) = TxCu(x),
• (Fg−1(x)(Yt, ν0, T

′′) ∪ Fx(Yt, ν0, T
′′′)) ∩ γ = ∅,

• {Yt(g−1(x)) : t < 0} ∩ Fg−1(x)(Yt, ν0, T
′′) = ∅

and {Yt(x) : t < 0} ∩ Fx(Yt, ν0, T
′′′) = ∅,

• Bν0({Yt(x) : t ≤ 0}) ∩ Fx(Yt, ν0, T
′′′) ∩ Πp,r0

= Bν0(x) ∩ Fx(Yt, ν0, T
′′′) ∩ Πp,ro ,

• gi(W s
r0

(p, g) ∩ Bν0(g
−1(x))) ∩ Bν0(g

−1(x)) = ∅ for i ≥ 1,
• Y−t(Cu(g−1(x))) ∩ Bν0(g

−1(x)) = ∅ for all t > 0.

Here Cu(g−1(x)) is the connected component of Wu(γ′, Yt)∩Πp ∩Bν0(g
−1(x))

containing g−1(x).

Lemma 5.3 ([14, Lemma 4.2]). Fix a C1 neighborhood U(Y ) ⊂ U(X) of Y .
Then there are 0 < ν1 < ν0

4 and Y ′ ∈ U(Y ) such that

(i) Y ′(y) = Y (y) if y /∈ Fg−1(x)(Yt, ν0, T
′′′),

(ii) Y ′
T ′′(g−1(x)) = x,

(iii) expp(E′
ν1

(x)) ⊂ Wu(γ′, Y ′
t ) ∩ Πp and

Tx expp(E′
ν1

(x)) = Tx(Wu(γ′, Y ′
t ) ∩ Πp).

Remark 5.4. (i) We see that Wu
2r0

(γ′, Yt) = Wu
2r0

(γ′, Y ′
t ) and Yt(x) =

Y ′
t (x) for t ≤ 0.

(ii) Let g′ : Πp,r0−→Πp be the Pioncaré map induced by Y ′
t . Then by

Lemma 5.3(i), γ′ ∈ PO(Xt) and g′(y) = g(y), if y ∈ Πp,r0\Bν0(g
−1(x)).

Thus g′(p) = g(p). By Lemma 5.3(ii), g′i(x) = g(x) for all i ≥ 0.
(iii) By the perturbation used in the above lemma, W s

ε0/4(p, g) may be
deformed near g−j(x) ∈ W s

ε0/4(p, g) for some j > 0. We denote
the deformed manifold by W s

ε0/4(p, g′). Then x ∈ W s
ε0/4(p, g′) and

TxW s
ε0/4(p, g′) = TxW s

ε0/4(p, g).

If expp(E′
ν1

(x)) does not meet W s
ε0/4(p, g′) transverse at x, then the piece E′

ν(x)
of the affine space is not transversal with respect to the local linear stable
manifold Es

p( ε0
4 ) of p. Thus we can destroy the intersection “locally” with a

C1 small perturbation (for more details, see [15]).

To simplify the notation, denote Y ′, g′ and W s
ε0/4(p, g′) by Y , g, and

W s
ε0/4(p, g), respectively. If expp(E′

ν1
(x)) dose not meet W s

ε/4(p) transversely
at x, then there is 0 < r′ < ν1

2 such that
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• for every δ > 0, there is ψδ ∈ Nε(δ)(Πx,2ν1) satisfying{
ψδ(expp(E′

ν1
(x)) ∩ Br′(x)) ∩ W s

r0
(p) = ∅,

ψδ(y) = y if y /∈ Πx,ν1 ,

• expp(E′
ν1

(x)) ∩ Br′(x) = [
∪

0≤t≤t2
Yt(Wu

2r0
(γ′, Yt))] ∩ Πp,r0 ∩ Br′(x),

where Y−t2(x) ∈ Wu
r0

(γ′, Yt).
For the C1 vector field Y and x ∈ W s(γ, Yt)∩Wu(γ′, Yt), we have numbers

ε⋆ > 0 and η⋆ > 0 satisfying the conclusion of Lemma 5.1. Choose a sufficiently
small constant ε > 0 with ε < min{ ε⋆

2 , r′

2 , η⋆

2 }, and let 0 < δ < ε be the
corresponding number with respect to ε in the definition of the orbital inverse
shadowing of Y . By Lemma 4.2, we can construct Z ∈ U(Y ) for the above
perturbation such that Z(z) = Y (z) if z /∈ Fx(Yt, 2ν1, T

′′′),
g̃(z) = g ◦ ψδ(z) if z ∈ Πx,2ν1 ,
dC1(Y,Z) < δ.

Here g̃ : Πx,2ν1−→Πg(x) is the Poincaré map induced by Zt. Because Z is in
Td(δ, 1, Y ), there is y ∈ M such that

dH(O(x, Yt), O(y, Zt) < ε.

Because Z(y) = Y (y) for y /∈ Fx(Yt, 2ν1, T
′′′),

W s
2r0

(γ, Zt) = W s
2r0

(γ, Yt) and Wu
2r0

(γ, Zt) = Wu
2r0

(γ, Yt).

Similar to the proof of Proposition B, we can get a contradiction. This com-
pletes the proof of Proposition C. ¤
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