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ADAPTIVE MESH REFINEMENT FOR WEIGHTED
ESSENTIALLY NON-OSCILLATORY SCHEMES

Daeki Yoon, Hongjoong Kim, and Woonjae Hwang

Abstract. In this paper, we describe the application procedure of the
adaptive mesh refinement (AMR) for the weighted essentially non-oscill-
atory schemes (WENO), and observe the effects of the derived algorithm

when problems have piecewise smooth solutions containing discontinu-
ities. We find numerically that the dissipation of the WENO scheme can
be lessened by the implementation of AMR while the accuracy is main-

tained. We deduce from the experiments that the AMR-implemented
WENO scheme captures shocks more efficiently than the WENO method
using uniform grids.

1. Introduction

In this study, we describe numerical schemes for one-dimensional conserva-
tion laws

(1)
∂u

∂t
+

∂f(u)
∂x

= 0, (x, t) ∈ I × [0,∞),

where I is an interval in space. The weighted essentially non-oscillatory (WENO)
scheme is a high order accurate finite difference scheme for problems with piece-
wise smooth solutions containing discontinuities [1, 2, 3]. There are two ap-
proaches of the WENO scheme to solve (1). One is the finite difference WENO,
which solves discrete version of (1), while the finite volume approach does not
solve (1) directly but its integrated version. That is, the finite difference ap-
proach evolves point values whereas the finite volume approach evolves cell
averages. Balsara and Shu [4] derived finite difference WENO schemes with or-
ders from 7 to 13 for one dimensional problems. For high dimensional problems,
the computational cost for the finite volume WENO approach is more expen-
sive than that of the finite difference WENO approach [3, 5]. In addition, the
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finite volume approach may cause negative weights for high dimensional prob-
lems [5]. See [3, 6] for detailed comparison between these approaches. WENO
scheme has been an effective method to problems containing shocks or com-
plicated solution structures. Even though WENO can resolve those fine-scale
features for unsteady flows, numerical solutions are slightly dissipative. Several
approaches have been introduced by many researchers in order to reduce those
dissipative errors. See [2] and references therein.

This paper is mainly concerned with reducing numerical errors of the WENO
scheme by implementing the adaptive mesh refinement (AMR) to the scheme.
AMR is a numerical method by which the computational domain is discretized
into grids of different sizes. This numerical scheme gives high resolution to
solutions by automatically refining regions where high resolution is required
[7, 8]. Two types of refinements are available, static or dynamic. Static mesh
is set up in the beginning of the computation based on static characteristics
of the domain such as the permeability field of the porous medium [9], and
is used throughout the computation without any modification. On the other
hand, many different meshes in time are allowed in case of dynamic refine-
ments. Adaptive refinement of grids plays an important role in reducing com-
putational costs. This study implements the advantages of AMR for WENO
so that complicated solutions can be identified while unnecessary calculations
are avoided. Recently Wang et al in [6] have derived explicit formulas for the
finite-volume, fifth-order WENO method on non-uniform meshes. Their re-
search shows improvements on the computational efficiency over uniform mesh
approach. However, since the fine mesh is chosen a priori, the scheme intro-
duced in [6] can be applicable only for short period of time. In addition, it
seems to be difficult to apply the scheme to high dimensional problems.

This paper is organized as follows: In Section 2, we review basic facts of the
WENO and AMR methods. Section 3 performs several numerical experiments,
in which AMR-implemented WENO scheme is compared with the WENO,
especially in view of the efficiency. In fact, it has been shown that the com-
putational cost is saved by introducing AMR. Concluding remarks and future
research directions are pointed out in Conclusions.

2. Preliminaries on WENO and AMR

2.1. WENO

In this section, we explore the WENO scheme [3]. We first consider a one-
dimensional reconstruction problem using the WENO scheme and then apply
the scheme to one-dimensional conservation laws.

2.1.1. One-dimensional reconstruction problem using WENO. Given a closed
interval [a, b], we divide the interval into N uniform subintervals

a = x 1
2

< x 3
2

< · · · < xN− 1
2

< xN+ 1
2

= b,
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where xi+ 1
2

= x 1
2
+ i∆x for the index i = 1, 2, . . . , N and ∆x = b−a

N . The point

xi = 1
2

(
xi− 1

2
+ xi+ 1

2

)
is called the center of the ith cell Ii = [xi− 1

2
, xi+ 1

2
].

Given the cell averages {v̄i} of a function v(x),

v̄i =
1

∆x

∫ x
i+ 1

2

x
i− 1

2

v(ξ)dξ

for each cell Ii, the kth order approximations to v(x) at the cell boundaries,
denoted by v+

i− 1
2

and v−
i+ 1

2
are calculated in the following way. Let k = 5 in

our study below. First, v
(r)

i+ 1
2

and v
(r)

i− 1
2

are obtained by

v
(r)

i+ 1
2

=
k−1∑
j=0

cr,j v̄i−r+j ,(2)

and

v
(r)

i− 1
2

=
k−1∑
j=0

cr−1,j v̄i−r+j(3)

for r = 0, 1, 2. The coefficient cr,j is obtained from the following Table 1:

Table 1. The coefficient cr,j in (2) and (3)

r j = 0 j = 1 j = 2
-1 11/6 -7/6 1/3
0 1/3 5/6 -1/6
1 -1/6 5/6 1/3
2 1/3 -7/6 11/6

Let us define β0, β1 and β2 by

β0 =
13
12

(v̄i − 2v̄i+1 + v̄i+2)
2 +

1
4

(3v̄i − 4v̄i+1 + v̄i+2)
2

β1 =
13
12

(v̄i−1 − 2v̄i + v̄i+1)
2 +

1
4

(v̄i−1 − v̄i+1)
2

β2 =
13
12

(v̄i−2 − 2v̄i−1 + v̄i)
2 +

1
4

(v̄i−2 − 4v̄i−1 + 3v̄i)
2
.

Let d0 = 3
10 , d1 = 3

5 , and d2 = 1
10 . Then wr and w̃r are defined by

wr =
αr∑2

s=0 αs

and w̃r =
α̃r∑2

s=0 α̃s

respectively, where αr = dr

(ϵ+βr)2
, and α̃r = d2−r

(ϵ+βr)2
. ϵ = 10−6 is used in the

denominators to avoid the division by zero [3]. Finally v+
i− 1

2
and v−

i+ 1
2

can be



784 DAEKI YOON, HONGJOONG KIM, AND WOONJAE HWANG

reconstructed by

(4) v−
i+ 1

2
=

2∑
r=0

wrv
(r)

i+ 1
2

and v+
i− 1

2
=

2∑
r=0

w̃rv
(r)

i− 1
2

.

2.1.2. Time discretization of WENO scheme. An ordinary differential equa-
tion

(5)
du

dt
= L(u),

where L(u) is a discretization of the spatial differential operator, can be solved
by the third-order TVD Runge-Kutta method in [1] to preserve the conservation
law:

u(1) = un + ∆tL (un) ,

u(2) =
3
4
un +

1
4
u(1) +

1
4
∆tL

(
u(1)

)
,

un+1 =
1
3
un +

2
3
u(2) +

2
3
∆tL

(
u(2)

)
.

The one-dimensional scalar conservation laws (1) can be converted to an
ordinary differential equation (5) in time above if the spatial derivative L is
discretized by

L = − 1
∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
,

where the numerical flux f̂i+ 1
2

approximates hi+ 1
2

= h(xi+ 1
2
) to a high order

with h(x) implicitly defined by

f(u(x)) =
1

∆x

∫ x+∆x/2

x−∆x/2

h(ξ)dξ

as in [1, 10].

2.2. AMR

AMR introduces more than one scales to represent variables in space or
time. When the AMR flags a variable in some region, the variable is redefined
on finer scales there. That is, given a grid and a solution on it, when the solu-
tion requires higher resolution, we first flag those cells that require refinement,
and then evaluate the solution on the new finer grids. R. Deiterding [11] ex-
plains AMR mathematically, especially on its parallel implementation. It also
explains how to handle multi-dimensional problems using AMR. M. Berger and
I. Rigoutsos [12] explains methods for flagging and generating new rectangular
grids. See also [13].

At each time if a solution on some level requires higher resolution, flagging
has been introduced over the corresponding grid. In this study, two measures
have been used for flagging. First, the gradient |∇u| is estimated to measure
discontinuity. If this gradient is large, the solution may contain a discontinuity
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and the corresponding grid has been flagged. Secondly, even when the gradient
is small if solutions from two different step sizes have large deviations, then the
corresponding grid has been also flagged. That is, if ∥u∆x(x, t)− u2∆x(x, t)∥∞
is large, the grid has been refined, where uk is the solution from the difference
scheme with step size k and ∥ ·∥∞ is the L∞ error. Grids on this flagged region
is replaced by new finer grids. When new grids are created, if the values of the
solution on those grids can be calculated from the solution of previous time step,
those calculated values are used on the fine grids. On the other hand, if the
solution on those fine grids are not defined previously, interpolations are used
to assign values on the corresponding cells. If the periodic boundary condition
is given, interpolations are performed so that periodicity is maintained at the
boundaries [14]. Linear interpolations are used in this study because oscillations
occur near discontinuities when the second or higher order interpolations are
used. Since the AMR performs extra computation over a flagged region only,
it may cause significant decrease of the computational costs such as CPU time
over non-AMR schemes.

Grids for each resolution are called levels. Level 0 implies the coarsest grids
covering the computational domain. Level 1 consists of fine grids for a solution
on grids of level 0, which requires higher resolution. Level 2 consists of fine grids
for a solution on grids of level 1, which requires higher resolution. Higher levels
are defined in a similar way. Thus, more accurate solutions can be obtained on
finer grids. In our study, rectangular grids are used on each level.

Since AMR uses several different grids in space, solutions on spatial grids
of each level have different timesteps when the CFL number is fixed. Let ∆xi

and ∆ti be the cell sizes in space and time of the ith level, respectively, such
that ∆ti/∆xi is fixed and ∆xi = ∆xi−1/2 for i = 1, 2, . . .. For simplicity, let
us assume that we have 4 levels, but the analysis below can be applied to any
number of levels. Suppose that the solutions on each level are at time t. First
the solution on level 0 propagates by ∆t0 in time. Secondly the solution on
level 1 propagates by ∆t1 once. Then the solution on level 2 propagates once.
Finally the solution on level 3 propagates once. After the propagation on level
3 is performed, the propagation on this finest grid is performed once more to
reach t + 2∆t3 = t + ∆t2. Then the solution on level 2 propagates once more
to reach t + 2∆t2 = t + ∆t1, and the solution on level 3 propagates twice to
reach t + ∆t1. After that the solution on level 1 moves by ∆t1 and solutions
on higher levels move the same way as above. When solutions on all the levels
reach t + ∆t0, they propagate to t + 2∆t0 in a similar way. This process is
repeated until the final time is reached [11, 15]. See Figure 1.

In this study, when a new level in hierarchy is introduced, grids in the previ-
ous level are divided into 4 smaller grids due to the ghost cells at the boundaries
from the WENO scheme. When levels are introduced at each time step, they
are increased up to 2 higher levels, even though levels can be increased to any
number of levels.
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Figure 1. Time evolution of AMR.

3. Numerical examples

In this section, we perform several experiments to evaluate the AMR-imple-
mented WENO method. First, the simple linear advection equation is consid-
ered. Then the derived scheme is applied to the nonlinear Burgers’ equation
and a nonlinear system of Euler equations.

3.1. 1D linear advection

Let us consider the Riemann problem for the one-dimensional linear advec-
tion equation:

ut + ux = 0, x ∈ [−1, 1],

u(x, 0) =

{
2 if x < 0
1 if x ≥ 0.

The WENO scheme with various values of N has been applied to solve the
problem for t ≤ 0.5. The CFL number is fixed to 0.5. As pointed out in [2],
WENO captures shocks or contact discontinuities accurately, but it introduces
numerical dissipation. Figure 2 represents the exact solution and the numerical
solution from the WENO scheme with N = 50 uniform grid points. It shows
that the WENO scheme introduces numerical dissipation near x = 0.5 where
a discontinuity develops. As the grid size is reduced, numerical diffusion from
the WENO is decreased. For example, the solution from the WENO scheme
with N = 800 points in Figure 4 shows much less diffusion than that observed
in Figure 2.

In order to estimate the efficiency of the derived AMR-implemented WENO
scheme, we compare the numerical result of the WENO scheme with that of the
AMR-implemented WENO, whose smallest grid is the same as the uniform grid
of the WENO. Since each level of mesh refinement introduces 4 finer grids in this
study and the current AMR experiments allow up to 2 higher levels, numerical
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Figure 2. Exact solution to the 1D advection problem at
t = 0.5 and the numerical solution from the WENO scheme
with N = 50.

results from the AMR-implemented WENO with N points are compared with
those from the WENO with 42N points. Figure 3 shows a portion of grids in
time, introduced by the refinement algorithm. Finer grids are shown near a
discontinuity as expected.

Figure 4 shows the solutions to the linear advection problem at t = 0.5
from the WENO scheme with N = 800 uniform grid points and the AMR-
implemented WENO scheme with N = 50 points. The AMR-implemented
WENO scheme introduces extra grids near a discontinuity, which result in
accurate shock capturing. The figure shows that the accuracy from the AMR-
implemented WENO with N = 50 is akin to that from the WENO with N =
800. Numerical diffusion from the WENO in Figure 2 is reduced when fine
grids are applied and the introduction of AMR has the same effects.

Table 2 shows the computational costs for the WENO and AMR-implement-
ed WENO schemes. The cost is measured by the CPU time required for the
computation. The programs are written in Java and the computations are
performed on a computer with Intel Core 2 2.0 GHz CPU. Table 2 and Figure 4
show that the accuracy is comparable to that of the WENO with N = 800
uniform grids, while about 90% of unnecessary computations have been saved
when AMR is implemented in case of the one-dimensional linear advection
problem.
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Figure 3. Grids in time used for the 1D advection problem.

Table 2. Computational costs for the WENO and AMR-
implemented WENO schemes for the 1D linear advection prob-
lem for t ≤ 0.5

t WENO (N = 800) AMR (N = 50)
0.5 2 sec 187 ms 219 ms

3.2. Burgers’ equation

We test the efficiency of the AMR-implemented WENO scheme in this sec-
tion on the nonlinear Burgers’ equation

ut +
(

1
2
u2

)
x

= 0, x ∈ [−1, 1],

u(x, 0) = 0.3 + 0.1 sin(πx)

with periodic boundary conditions. The CFL number is fixed to 0.5.
Solutions of the above Burgers’ equation at early times are smooth and Fig-

ure 5 shows solutions at t = 1. The figure shows that the AMR-implemented
WENO with N = 50 points give the sufficient resolution for the smooth solu-
tion.

Shocks will develop in time and Figure 6 shows solutions containing shocks
at t = 6 from the WENO scheme with N = 800 uniform grid points and
the AMR-implemented WENO with N = 50 points. With only two levels of
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Figure 4. (Top) Exact solution to the 1D advection problem
at t = 0.5 and numerical solutions from the WENO scheme
with N = 800 points and from the AMR-implemented WENO
scheme with N = 50 points and (Bottom) the magnification
near a shock about x = 0.5.

refinements, AMR can capture shocks as accurately as WENO with much finer
uniform grids does.
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Figure 5. Solutions to the Burgers’ equation at t = 1
from the WENO scheme with N = 800 points and the AMR-
implemented WENO scheme with N = 50 points.

Table 3 shows the computational costs for the WENO and AMR-implement-
ed WENO schemes for the Burgers’ equation for t ≤ 6. Table 3 and Figure 6
show that the accuracy from the AMR-implemented WENO with N = 50 is
comparable to that from the WENO with N = 800, while the computational
cost is reduced by about 90 % when AMR is applied, similarly to the linear
advection in Section 3.1.

Table 3. Computational costs for the WENO and AMR-
implemented WENO schemes for the Burgers’ equation for
t ≤ 6

t WENO (N = 800) AMR (N = 50)
1 968 ms 109 ms
2 1 sec 922 ms 140 ms
3 2 sec 875 ms 265 ms
4 3 sec 844 ms 390 ms
5 4 sec 797 ms 516 ms
6 5 sec 687 ms 578 ms
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Figure 6. Solutions to the Burgers’ equation at t = 6
from the WENO scheme with N = 800 points and the AMR-
implemented WENO scheme with N = 50 points.

3.3. Euler equation

In this section we solve the one-dimensional Euler equation [16] ρ
ρv
E


t

+

 ρv
ρv2 + p
v(E + p)


x

= 0

for x ∈ [0, 1], where ρ is the density, v is the velocity, E is the total energy, and
p is the pressure. The total energy E is decomposed as

E =
1
2
ρv2 + ρe

for the specific internal energy e. See [16] for details. Following initial condi-
tions are used:

(ρ, v, p) =

{
(0.125, 0.0, 0.1) if x > 0.3,
(1.0, 0.75, 1.0) if x < 0.3.

The CFL number is fixed to 0.9 and γ = 1.4.
When the problem is solved for t ≤ 0.2, the numerical solutions for e, p, ρ

and v are obtained as in Figure 7 and Figure 8. As in the previous exam-
ples, the AMR-implemented WENO with N = 50 points gives quite accurate
results. We can infer from these numerical experiments that the derived AMR-
implemented WENO scheme is also efficient for solving this nonlinear system
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of equations whose solutions contain rarefactions and contact discontinuities as
well as shocks.
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Figure 7. Solutions to the Euler equation at t = 0.2 from
the WENO scheme with N = 800 points and the AMR-
implemented WENO scheme with N = 50 points. (Top) e
(Bottom) p
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Figure 8. Solutions to the Euler equation at t = 0.2 from
the WENO scheme with N = 800 points and the AMR-
implemented WENO scheme with N = 50 points. (Top) ρ
(Bottom) v

Table 4 shows the computational costs for the WENO and AMR-implement-
ed WENO schemes for the Euler equation for t ≤ 0.2. It shows that about 90 %
of the computational cost is reduced due to the implementation of AMR.
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Table 4. Computational costs for the WENO and AMR-
implemented WENO schemes for the Euler equation for t ≤ 0.2

t WENO (N = 800) AMR (N = 50)
0.2 12 sec 594 ms 1 sec 500 ms

4. Conclusions

AMR has been successfully implemented to the WENO scheme to solve lin-
ear or nonlinear equations containing discontinuities. When AMR is applied
to the WENO scheme, the computational cost can be reduced while the accu-
racy is maintained. In our experiments, the cost is reduced by 90%. In the
future research, the AMR will be implemented over a hybrid WENO scheme.
For example, the AMR with the central difference may be applied over smooth
region while the AMR with the WENO near discontinuities.
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