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OSTROWSKI TYPE INEQUALITY FOR ABSOLUTELY
CONTINUOUS FUNCTIONS ON SEGMENTS
IN LINEAR SPACES

EDER KIKIANTY, SEVER S. DRAGOMIR, AND PIETRO CERONE

ABSTRACT. An Ostrowski type inequality is developed for estimating the
deviation of the integral mean of an absolutely continuous function, and
the linear combination of its values at k 4+ 1 partition points, on a seg-
ment of (real) linear spaces. Several particular cases are provided which
recapture some earlier results, along with the results for trapezoidal type
inequalities and the classical Ostrowski inequality. Some inequalities are
obtained by applying these results for semi-inner products; and some of
these inequalities are proven to be sharp.

1. Introduction

In 1938, A. Ostrowski (see [25, p. 226]) considered the problem of estimating
the deviation of a function from its integral mean. For any continuous function
fon [a,b] C R which is differentiable on (a, ) and | f'(x)| < M for all z € (a, b),
the inequality

b r_ atb 2
1) @ - [ S| < }1+((b))] (b= ),

holds for every z € [a, b] (see [25, pp. 226-227] for the complete proof). This
is then known as the Ostrowski inequality (see [24, p. 468]). The first factor
on the right hand side of (1.1) reaches the value of i at the midpoint and
monotonically increases to % which is attained at both endpoints [25, p. 226].
It implies that the constant i is best possible, that is, it cannot be replaced by
a smaller quantity (see also [2, pp. 3775-3776], for an alternative proof).

The Ostrowski inequality has been generalised for functions of bounded vari-
ations (see [15, p. 374] and [19, pp. 3-4]). For this class of functions, the results
have been developed to estimate the absolute difference between the linear com-
bination of values of a function at k + 1 partition points (of a closed interval)
from its integral mean (see [10]). A similar result has been obtained for the
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class of absolutely continuous functions (see [11, 12, 15, 17, 19]). The classical
Ostrowski inequality and the trapezoidal type inequality are obtained by con-
sidering some particular cases of the generalised Ostrowski type inequality (see
[15, pp. 378-381]).

Another possibility of generalising the Ostrowski inequality is to consider
the case of convex functions. Since any convex function is locally Lipschitzian
(hence, it is locally absolutely continuous), thus it can be connected to the
previous mentioned cases (see [15, 18]). For other possible directions, we refer
to the results in [4, 5, 6, 7, 8, 9].

An extension of the Ostrowski inequality to functions with values in Banach
spaces has been given in [3]. A similar result has been established for functions
defined on segments in linear space (see [17]). An application for semi-inner
products in any normed linear spaces was also provided in [17, pp. 95-99].
However, the sharpness for the constants of these inequalities has not been
considered.

In this paper, we develop an Ostrowski type inequality for estimating devi-
ation of the integral mean of an absolutely continuous function and the linear
combination of its values at k+ 1 partition points on a segment in (real) linear
spaces. We also provide some particular cases which recapture the results in
[17] along with the results for trapezoidal type inequalities and the classical
Ostrowski inequality. In a normed linear spaces, we obtain inequalities for
semi-inner products by applying the obtained results and these inequalities are
more general than those in [17]. Some of these inequalities are proven to be
sharp and the proof also covers the sharpness of those in [17].

2. Definitions

All definitions and notation which will be used in the paper, are described
in this section for references. Throughout this paper, we assume that all linear
spaces are over the field of real numbers.

Let X be a linear space and z,y € X. We consider the Gateaux lateral
derivatives of a function f at x € X, as

(Tef@)(y) = lm LEFW=F@)

t—0t t ’

if the above limits exist for any y € X.

Let x,y € X, x # y and define the segment [x,y] := {(1—t)z+ty, ¢t € [0,1]}.
Let f : [z,y] — R and the associated function h = g(x,y) : [0,1] — R, h(t) =
glz,y)(t) == f[(1 =)z + ty], t € [0,1]. It is well known that the function
h is absolutely continuous on [0,1] if and only if A is differentiable almost
everywhere, the derivative h' is Lebesgue integrable, and h(t) = fot K (s)ds +
h(0) (see [1, p. 263] and [28, pp. 106-107]).

Lemma 1. With the above notation, h is absolutely continuous if and only if
f satisfies the following properties
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(1) VfI(1 =)z + yl(y — z) exists almost everywhere on [0,1];
(2) VfI(1 =)z + y](y — ) is Lebesgue integrable on [0,1];
t
(

(3) £1(1 — )z +1y] = / VI - sy + syl(y — 2)ds + f(z).

Definition 1. Let f be a real-valued function defined on a segment [z, y] of a
linear space X. We say that f is absolutely continuous on segment [x,y] if f
satisfies the conditions (1)-(3) of Lemma 1.

By Definition 1 and Lemma 1, we conclude that f is absolutely continuous on
segment [z,y] if and only if h is absolutely continuous on [0, 1].

Assume that (X, |- ) is a normed linear space. The function fo(z) = 1 ||z|?
(x € X) is convex and the following limits

— oyt —
(T, 9)si) = (V+(7)f0(y))($)—tjé§%7) o7

)

exist for any x,y € X. They are called the superior (inferior) semi-inner
products associated to the norm || -] (see [16, pp. 27-39] for further properties).
Throughout this paper, we are also interested in the function: f,.(x) = ||z||"
(x € X and 1 < r < o0), which is also a convex function. Therefore, the
following limits, which are related to superior (inferior) semi-inner products,

21) (Ve f@)@) = tim il =l

-2
t0+H(o) t = 7‘Hy”’r <m7y>s(i)7

exist for all z,y € X whenever r > 2; otherwise, they exist for any = € X and
nonzero y € X.

3. The results

Our main result (Theorem 1) is an Ostrowski type inequality for estimating
deviation of the integral mean of an absolutely continuous function and the
linear combination of its values at k + 1 partition points on a segment of a
linear space. This result is basically a follow-up for the previous results:

(1) Ostrowski type inequality for estimating the absolute difference be-
tween the linear combination of values of a function at k + 1 partition
points from its integral mean (see [10]) ;

(2) Ostrowski type inequality for functions defined on segments of a linear
space (see [17]);

(3) Ostrowski inequality for absolutely continuous function (see [11, 12, 15,
17, 19)).

Following Theorem 1, we have two corollaries, in which we consider its partic-
ular cases. Corollary 1 estimates the trapezoid type functionals, while Corol-
lary 2 estimates the Ostrowski type functionals. Proofs for these results are
provided in Section 4. The results are as follows:
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Theorem 1. Let X be a linear space, I, : 0 =55 < 81 < -+ < Sp_1 < S =1
be a division of the interval [0,1] and a; (i =0,...,k+1) be k+ 2 points such
that ag = 0, o; € [$i—1,8:]) (1 =1,...,k) and a1 = 1. If f: [z,y) C X = R
is absolutely continuous on segment [z, y|, then we have
(3.1)

1 k
10 =00+ )t = Y (0 = )10 = )+ 5]

=0

li;h? #3 (en = ) ] VA=) + 3] =~ )]
VI =)z +yl(y — 2) € Loo[0, 1];

1

k—1 L
< ﬁ Z [(a¢+1 — s¢)Q+1 + (si41 — Oéi+1)q+1]:| (VAL =)z + -yl (y —2)|p,
vaf[(ll__ )‘r+y](y_‘r)eLP[O71L p> 17 %—i_%:la

[éy(h) + max

SitSit1
i€{0,....,k—1} 2

} 110 = e + 4y - D),

where v(h) := max{h;|i =0,...,k — 1}, hy ;=841 —8; (i=0,...,k—1) and
II-ll, (p € [1,00]) are the Lebesgue norms.
The constants i, and % are sharp.

Qi1 —

1
(g+1) 9

Corollary 1. Let X be a linear space, z,y € X, x #y and f : [z,y) C X - R
be an absolutely continuous function on segment [x,y]. Then for any s € [0, 1]
we have the inequalities

1
/0 FIL = )z + tyldt — s () — (1 - 5)£(4)

[5+ (5= DIV = 2+ 4] — 2)
if VA =)z + yly — x) € Lo[0,1;

32) < (q+11)% [s7H1 4 (1 — 3)q+1]% IV = )z + 4]y — )],
VA=) +-yly—2) € L0,1], p>1, I+ =1;

[3+ s = 5[] IVAQ =)z + ylly — 2)lh,

where ||- ||, (p € [1,00]) are the usual Lebesgue norms on Ly[0,1]. Particularly,
we have

/Olf[(l —t)z + ty]dt — M
VA =)z + yl(y — 2)lloo,

(33) < L VA= e+l -l p>1 Ll
2(g+1)4q

IV =)z + gy — 2|1
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The constants in (3.2) and (3.3) are sharp.

Remark 1. If f is convex in (3.3), then (f(w A€ fo [(1-t)z+ ty]dt)
non-negative by Hermite-Hadamard integral inequality (see [14, p. 2]).
Corollary 2. Under the assumptions of Corollary 1, we have the following

inequalities for any s € [0, 1]

[(1—t)z+ty]dt — f[(1 —s)x + sy]‘

3+ (s - )]va >x+y]< — )l
V(L= o+ ylly — o) € Lo 0, 1);

O e [sq“+<1fs>q+11a||w[<1f->z+~y1<y—x>||p,
VA= e+ 4l - o) € L0, p>1, L+ 1=1;
[3+ s = 3] IV =)z + 9l(y — o),

where ||+ ||, (p € [1,00]) are the usual Lebesgue norms on Ly[0, 1]. Particularly,

we have
1
/ (L= )z + ty)dt — f (x;y)‘
0
iHVf[( =)z + Y[y — )|,
(3.5) < VAL =)z + )y —2)lp, p>1, 5+ =
%(qH)‘I
VAR =)z + ylly — 2)1.
The constants in (3.4) and (3.5) are sharp.

Remark 2. If f is convex in (3.5), then (fol fI1 = t)x + tyldt — f (%)) is
non-negative by Hermite-Hadamard integral inequality (see [13, p. 2]).

Remark 3. The inequality (3.5) has been obtained in [17, Corollary 1]. We
also note that the bounds in (3.4) and (3.5) are the same as the ones in (3.2)
and (3.3), respectively. Cerone in [6, Remark 1] stated that there is a strong
relationship between the Ostrowski ((3.4) and (3.5)) and trapezoidal function-
als ((3.2) and (3.3)) which is highlighted by the symmetric transformations
amongst their kernels. Particularly, the bounds in the Ostrowski and trape-
zoidal type inequalities are the same [6, p. 317]. Therefore, from now on, we
will only present the results for the Ostrowski functionals. As for the proof of
the best constants, the same choices of vectors and linear spaces would also
apply for the trapezoidal functionals, unless told otherwise.

Example 1 (Example of a non convex function). Let (X, || -||) be a normed
linear space and consider the absolutely continuous function f(z) = ln(||z]),



768 E. KIKIANTY, S. S. DRAGOMIR, AND P. CERONE

x € X \ {0}. Applying this to (3.5) we obtain the following for any linearly
independent =,y € X:
r+y
2

/01 (|(1 = £) + ty)dt — In (

1 sup (y—=,(1—u)z+uy) ;)
1 1— 2 ’

S|

1
< ( ‘ y—z,(l—u)ztuy) ;) )p 1 1
T 5 p>1, -4+=>=1;

2(q+1)‘1 fO H(l w)z+uy|| ’ ' p q )

f y mv(l U)I+u3}>s(,) d
2Jo |TTA=e w4

by (2.1) and using the chain rule. Using the Cauchy-Schwarz inequality for
superior (inferior) semi-inner products (see [16, p. 29]), we obtain

/01 In(|(1 = ) + ty|)dt — In ( =t yH)‘

1 sup [[(1—w)z +uy| ™
uE[Ol]
1
< lly—=| ( —Pd )5 >1. 1417,
2(+1)q fo I = w)z+ uy] v P vt '
3o I = w) + uy| ~ du.

4. Proof of main results

Proof of Theorem 1. Under the assumptions, we have the Ostrowski type in-
equality for absolutely continuous function h(-) that has been established in
10, 11, 12, 15]

k

b
/ h(t)dt — Z(aiJrl — a;)h(s;)

=0

k 2
2 S; +87,+1 . .
[12 : +z (%H ) ] Wil i 1 € Lol

k—1 a
L [(aiﬂ —5) T 4 (541 — ai+1)q+1] 121,
(e+D |55

if B € Lyla,b], p>1, L+t =1

IN

SitSit1
2

[éu(h) +  max  |ai41 —

i€{0,....k—1}

} T8

Consider the auxiliary function h(t) = g(z,y)(t) = f[(1 — t)z + ty] defined on
[0,1]. Since f is absolutely continuous on the segment [z,y], it follows that
h = g(x,y) is an absolutely continuous function and we may apply the above
inequality. We obtain the desired result by writing the above inequality for
h(t) = g(z,y)(t). The sharpness of the constants follows by the particular
cases which are given in Corollary 1 and Corollary 2. O
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Proof of Corollary 1. Choose sg =0,s1 =land0=qy < a1 =s<az =1
in Theorem 1 to obtain (3.2). By choosing s = % in (3.2), we obtain (3.3).
Now, we will prove the sharpness of the constants in (3.3). Let o and g be real
positive constants such that

[ 1= s+ - 12 10)
0

o[ V(1 =)z + y)(y — =) o,
5( S VA =z +lly =)l p>1, 5+ =1
(g+1)

q
Take X =R, [z,y] = [a,b] CR (a #b) and f(z) = }a? - #’ Note that f is a
convex function on the closed interval [a, b], thus, it is an absolutely continuous
function (see [28, Proposition 5.16]). Therefore,

1 a(b—a),
R R G LR R
(a+1)
From the first case, we obtain o > % since b—a # 0, which proves the sharpness
of % in the first case of (3.3). Now, let ¢ — 1 in the second case, we obtain
i(b —a) < %ﬁ(b — a), that is, § > %, since b — a # 0, which shows that % is
sharp in the second case of (3.3).
Now, suppose that

<

Q|-

2

1
TV [ 101ty + ] < 195100~ -+ s = )l
0

for a real constant v > 0. By choosing X = R and the absolutely continuous
function f(z) = CQLW —tan"! (&) (C > 0) on the interval [0,1] (the proof
of this part is due to Peachey, McAndrew, and Dragomir [26, p. 99-100]), we
obtain

Lo (Y, 1
— —tan — —_ — .
2C c) T ecry1) =" e
Thus,
1 1 C?
>C2+1)|=—-Ctan ' (= )+ —
7_(C+){2 C'tan <C>+2(CQ+1)]’
and by taking C — 0", we obtain v > % and the proof for the sharpness of

the constants in (3.3) is complete. This implies that all constants in (3.1) and
(3.2) are sharp. O

Proof of Corollary 2. Choose s =0 < s =s<1=scand 0 < a; <s<
az < 1 in Theorem 1, then let a; = 0 and ay = 1, to obtain the (3.4). By
choosing s = 1 in (3.4), we obtain (3.5). The proof for the sharpness of the
constants in (3.5) is similar to those in (3.3) with the same examples as those
in the first two cases and the same choice of function on interval [—1, 1] for the

third one. This implies that all constants in (3.1) and (3.4) are sharp. O
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5. Application for semi-inner products

The following result holds in any normed linear space with the semi-inner
products (-, ) s()-
Proposition 1. Let (X, - ||) be a normed linear space, I, : 0 = 59 < 51 <
s < Sp—1 < Sk =1 be a division of the interval [0,1] and o; (i =0,...,k+1)
be k+ 2 points such that ag =0, «; € [s;—1,8;] (i =1,...,k) and apy1 = 1. If
1 <r < oo then

1 k
|/ (1=t + tyl|"dt = Y (i1 — aq)l|(1 = si)a + Sz'yllr|
0

i=0

1k71 k—1 S 48 2
DI CHEEEy
i=0 i=0

X s?opl][rll(l —w)z +uyl|" [y — =, (1 — w)z + uy) s,
ue|0,

k—1

1
e+ |55

Q=

S
P

1
X[/ Tl(l—U)ﬂeruyII"2(1/—50,(1—U)w+uy>su>lpdu] ;
0

1 1 _ 1.
:| p>1,5—|—5—1,

1
x / P = w)z + uy |2y — 2, (1 — w)e + ug) oo |du,
0

Si+Sit1
ip1 — g

1
[QV(h) T ey

hold for any x,y € X, whenever r > 2, otherwise they hold for any linearly
independent x,y € X. Here, v(h) := max{h;|i = 0,...,k — 1}, and h; =
Si+1 — S¢ (i:O,...,k—l).

Proof. Let f(x) = ||z||", where z € X, and 1 < r < oo. Since f is convex on
X then g(z,y)(-) = f((1 — )z + - y) is convex on [0,1] for any 1 < r < o0
and z,y € X. It follows that g(z,y)(-) = ||(1 — )z + - y||" is an absolutely
continuous function. Therefore, we may apply Theorem 1 for f (see (2.1)) and
obtained the desired result. (]

Remark 4. The result we obtain in Proposition 1 is “complicated” in the sense
that the upper bounds are not practical to apply. Here, we suggest simpler,
although coarser, upper bounds (see [17, pp. 97-98]) using the Cauchy-Schwarz
inequality for semi-inner products. Under the assumptions of Proposition 1,
and by Cauchy-Schwarz type inequality for superior (inferior) semi-inner prod-
ucts (see [16, p. 29]), we obtain

Sl[lopl][TH(l —u)z +uy|" 2y =, (1= w)z + uy) )|
ue|0,



OSTROWSKI INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS 771

(5.2) <rlly -z P ]”(1 —w)z +uy|" = rlly — @l max{|lx|"" ly["}
u€l0,1

for all z,y € X.

Note. The last two quantities in (5.2) are equal. The argument is as follows:
consider the function f(t) = ||(1 —t)z +ty||"~! on [0,1]. Since it is continuous
and convez on [0, 1], then the supremum of f on [0,1] is exactly its mazimum,
and it is attained at one of the endpoints.

We also have the following for any =,y € X

10

1
r(/|u1—wz+umr2@—xx1—wx+qum%w)
0
1 3
<yl ([ 10wt ulo )
0

1
z|[P=D 4 ||y|[Pr=D\ ®
< rlly— 2 (II I . Iyl ) 7

by Hermite-Hadamard inequality for the norm (see [21, p. 3] and [27, p. 106]),
and

r(AWMIwx+uwr2@xx1wx+uw“mm0

1
HWxn</|K1mx+umrlmQ
0

1 _ _
< orlly ==l el + g™,

IN

N

by the refined triangle inequality for the norm (see [21, p. 4] and [27, p. 106]).
Therefore, we have the following inequalities

k

1
‘/ (1= t)z + ty[|"dt — > (i1 — ai)|[(1 = si)a + siy]”
0

=0

k-1 k-1 2
Si + 8; _
|:iZh?+Z <az‘+1 —Tﬂ> } SUP]H(l—U)l""ul/HT L

i—0 i—0 u€(0,1

q

k—1
(53) < rlly 2 mﬁﬁ{ Kwﬂ—&w“+wﬂ—mﬂﬁ“@

1 P
X / (1 —u)x+uy|\p(rfl>du] ., p>1, %-ﬁ- % =1;
0

|:%l/(h) + max

Si+Sit1
Qi) — 5

1
| [16= e+ wi—a
JO
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2
Si+s - -
{ Zh“Z( iy = ) }max{w Ll

=0 i=0

k—1

1 o g.)atl )t
(54) < T”y - I” (g+1) |:; [(al+1 5i) + (Si41 — @it1) }

1
y [uxnpw - uyuﬂr*l)} '

a

2l

1 1 _ 1.
p>l,;+571,

] (2= + i),

5+5+1

1 |:%I/(h) + : 111@)]571}

Ayl —

which hold for any z,y € X. The constants in the first and second cases of
(5.3) and (5.4) are sharp. The proof follows by its particular cases which are
mentioned in Proposition 2.

Corollary 3. Let X be a normed linear space, s € [0,1] and 1 < r < co. Then,
we have the inequalities

\A 10—t + tylrde — (1 s)

[1+(s—3)?] sup }Il(l —u)z +uy||""},
u

gt =g [10-we+ wlt i)
(g+1)7 0
+-=1

(55) <rly—z] 1
p>175

b 300 ([ 0 =g sl

[1+ (s = 3)*] max{]Jz]"=", Iy},

1 + +172 ][ U"‘HZJHI(T .
(1 —s) l]q

1
q

p>1
35+ s =3l Azl +llylmh).

»Q\»—A

Ly
p T

for any x,y € X. The constants in the first and second cases of (5.5) and (5.6)
are sharp.

Proof. Choose s =0<s3=s<1=syand 0<a; <s < ay <1, then let
a1 =0 and @y = 1 in (5.3) and (5.4). The sharpness of the constants follows
by the particular case which is pointed out in Proposition 2. O

Proposition 2. Particularly, we have

1
L/|u—wx+wwm—nu—@x+ww
0
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£+ (s = 37 max{ ], Iy}, 1
(1 - s) T (/IH(PU)Hu' )
S[sTT+(1—s A y ,

p>1,%+$:1;

b= 340 ([ 10w+ wlan).

4+ (5= 3)*] max{ ] Iy,

b qgen EAVASEE Hivl\p+||y|\”
(q+1)5[ +1=9)™] ( )

(¢+1)7

IN

(5.7) 2/ly — |

(5.8) < 2fy —«|
l:

[}

p>1, ; +
5[5+ s = 3l] (=l + 1yl
for any x,y € X. The constants in the first and second cases of (5.7) and (5.8)

are sharp. We also have
LU A
1 g ) | W

Proof. We obtain (5.7) and (5.8) by choosing r = 2 in (5.5) and (5.6), re-
spectively. The proof for the sharpness of the constants is implied by those in
Proposition 4). By choosing » =1 in (5.5), we obtain

(5.9) \ [ 0=+ lar - —s>x+sy||\ <

The constant + in (5.9) is sharp.

1
[ 1000 el = 1= 2+ s
0

RCEE 1
G100 < el ol 0o oo

+

Fls-1l

for any z,y € X. Note that for all 1 < ¢ < co and s € [0, 1],

1
W) 3+ 6-7 =242 [ yar,
0 1
1 1 a
—L [s7T 4 (L —s)at ] = </ It — s|th> :
0

— 3| = max{s,1 - s} = tst10p1]|tf s,
€10,

Q=

1 1
and / |t —s|dt < </ |t — s|th> < sup [t — s| by Holder inequality. Thus,
0 0 te[0,1]

Q=

2
(5:11) i* (3_ ;) = (q:l)[sq“ +(1— ) <
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We conclude that the constant i is best possible among the constants in all
cases of (5.10) and we obtain (5.9). The proof for the sharpness of the constant
will be given in Proposition 4. O

6. Some particular cases of interest

Proposition 3. Let X be a normed linear space and 1 < r < co. Then

1
0< / (1 —t)z + ty||"dt —
0

L sup (1w + gl
u€[0,1]
1
2a+ 1)s
%Aﬂﬂ—mw+wW”m,

T max{|lz(|" [y

p(r—1) p(r—1)
(62) <rly—z uLf(W| ol ),p>L;+;:h
q q

Tl + [yl
hold for any x,y € X. The constants in the first and second cases of (6.1) and
(6.2) are sharp.

Proof. Choose s = 1 in (5.5) and (5.6). The sharpness of the constants follows
by the particular case which is pointed out in Proposition 4. (I

s

T +y
2

1
A ) R o
0

Qe

(6.1) < rlly -]

"=

Proposition 4. Particularly,
1 2
0< [ 0= b+ byl - x‘;yH
0

3 sup (1 —w)z +uyl,

u€(0,1]

1 P
63) <ly—al 11</OMz+wwmQ psLiploy
(qtl)q 0 P4

/Hﬂ—um+uwmu
0

3 max{ ], [ly[},

1
P4 P\ pr
6.4) < |ly -z g 1)l (lel : Iyl ) psLlaloy
q+1)4
3l + llylD),

hold for any x,y € X. The constants % and 1 are sharp in the first and second
cases of (6.3) and (6.4). We also have

1
z+y 1
(6.5) o< [10- 0o+ w252 < Fy - al.
0
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The constant & in (6.5) is the best possible constant.

Proof. We obtain (6.3) and (6.4) by choosing » = 2 in (6.1) and (6.2), respec-
tively. Now we will prove the sharpness of the constants in the first two cases.
Suppose that the inequality holds for the constant A > 0 instead of 1 , that is,

r+y
[ 1000 P |52 <y slmetie ol

Note that it is sufficient for us to prove the sharpness of the constant in the first
case of (6.4), since both quantities are equal. Choose (X, |- |) = (R%,| - [1),
z=(%,n),and y = (—1,n) for n € N, then we have

3n? +1§A<2n +2>'

3n? n?

Taking n — oo, we obtain 1 < 2A, that is, A > %

Note that the constants in the second case of (6.3) and (6.4) are also sharp.
Suppose that the inequality holds for the constants B,C' > 0 instead of the
multiplicative constant 1, that is,

/||1—t)x+ty||2dt H H

1 1
P _ p P\ »
. Bm x|</” o)’ <= (Il ol
(q+1)s 2
Choose (X [-1) = ®%| 1), z=(%,n), and y = (—1,n) for n € N, then we
have

241 2(n2 4 1)P 21p_2p+2% 92 + 1
321 (W £ 1 1y =) 2
3n n2(g+1)7(p+1)7 n?(g+1)
Taking ¢ — 1 and n — oo, we obtain B > 1 and C' > 1.
By choosing r =1 in (6.1) (or (6.2)), we obtain
1

ally ==l
- y—x|, g>1;
©6) o< [ 10-0e+aa- |25 < Sl -al,
slly —
for any z,y € X. Note that for any 1 < ¢ < oo, we have < + < 1 (the
2(g+1)a

proof follows by choosing s = % in (5.11)). Therefore, % is the best possible
among the constants of all cases in (6.6) and we get (6.5). Now, suppose that
the inequality holds for any constant D > 0 instead of i, that is,

1
z+y
[ = on s tlar = | 52| < Dl - .
0

Choose (X, | -[|) = (R2,]| - [[1), z = (2,1), and y = (2, —1) to obtain § < 2D,

that is, D > i. Thus, the constant i is sharp. O
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Remark 5 (The case of inner product space). If X is an inner product space,
the constant in the first case of (6.4) is not sharp, since

1 2
1
/ 11 = t)a + ty|2dt — “y‘
0

— il — 12
and the fact that
1 1 1
oy ==l < Flly = 2ll(lzl + llyl) < Zlly — 2 max{fl2], [lyll}
The sharpness of the constant in the second case of (6.4) is not preserved in
this case, since we have the fact that

1 1 1 1
ly == < Hly = @lll=ll + vl < Zlly = 2l dl” + y17)7,

and that § < ——. The constant in the third case of (6.4) is not sharp,
27 (g+1) ¢
since
Sly—al? < <ly —all(lzl + )
ly—= < pllv—zl(lz yl).

Similarly, for the trapezoidal functionals, we have the following facts:
2+ yl*  [* 1
B e — 70— o0+l = Gl -l
0

and
(1) glly—=|? <
(2) %Hy*aﬂ\ll2 <

slly = alldllzll + llyl) < 5lly — allmax{llz]l, [y}
slly =l llll + llyll) < glly — 2l dl=l” + [ly[*)? and that

T 28 (g+1)7
3) glly —=l* < glly — 2l (l=ll + [ly]);
which show that the constants in these upper bounds are not sharp for the
trapezoidal cases.
The constant § in (6.5) (and also in the trapezoidal case) remains sharp in
this case. The proof follows by choosing (X, ||-]|) = (R,|:]), x =1, and y = —1.

7. Comparison analysis

In [21, p. 11, 15], we considered an Ostrowski type inequality for convex
functions on linear spaces and obtained the following result in any normed

space (X, |- )
! 1
/0 (1 —t)z + tyl|"dt — < grlly -z, yllyll"=2i = (y =z, zf|z]|"72)s)
for any z,y € X whenever r > 2; otherwise they hold for nonzero x,y € X,
and (-,-)s) is the superior (inferior) semi-inner product with respect to the
norm || - |.
In this paper, we have considered the Ostrowski type inequality for abso-
lutely continuous functions, which is more general than [21] and have obtained

Tty "
2




OSTROWSKI INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS T

the following bounds for the left-hand side of the inequalities above (see (6.1)
and (6.2)). The bound that we have obtained is,

1 _ _
*T\Iy — x| 51[1P1]||<1 —wr +uy|"h = Jrlly — @ max{flz7 [y}
uel0
Note. Since the last two bounds in (6.1) and (6.2) are not significant for the
case of r = 1 (see Proposition 4), we consider only the first bound for this
section.

We want to compare the two bounds: £ ({y—=, y|ly[|"~2)i—(y—z, z[|z["~%)s)
and fr|ly—a| max{||z|"7*,|ly[|""'}. The bound that we obtained in this paper
is simpler in the sense that it only involves the given norm, while the other one
involves not only the given norm, but also the superior (inferior) semi-inner
product associated to the norm. However, the bounds in [21] are proven better
for the case of inner product spaces, where r = 1 and r = 2. The verification
is as follows:

Case of r = 1. We wish to compare 3 (y — o) and 1lly — | (for

¥z
I
nonzero z,y € X). We recall the Dunkl-Williams inequality (see [20, p. 53],

[22, p. 890] and [23, p. 448])
||1’|| ||y|| = Tl + vl

which holds for nonzero z and y in an inner product space X. Now, for z,y € X
where z,y # 0, we have

1
(v-og-i) < glv=al| -
S\ e I
_ 1” T
< ERAT
MEESTI
< = “ly — |-

We conclude that the bound in [21] are better.

Case of r = 2. We want to compare $(y — z,y — z) = 1|y — z||* and

Ly — = max{||z|, ||ly[|}. For all z,y € X, we have

1 1 1
2y =2l < Zlly = 2l + vl < 5 lly — 2l max{|l=], [ly]]}

We conclude that the bound in [21] are better.
Case of 1 < r < oo, r # 2. We conjecture that

Conjecture 1. In an inner product space (X, (-,)), the following inequality

1 _ o 1 _ -
37— ylyl™ = allz]") < Jrlly — @l max{ |2l ly
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holds for any x,y € X whenever r > 2; otherwise it holds for any nonzero
z,y € X.

We observe that the above statement is true in some cases. Taking X =R

and multiplication as its inner product and utilizing MAPLE for the following
functions

1 r— r— 1 r— r—
O(z,y) = rly —o|max{fz| Syl - 5"y —2)(ulyl 2 — zfa|"?)
for z,y € R, we observe that for several values of r, we have ®(z,y) > 0 for

any z,y € X (see Figure 1 for the plot of ® with the choice of r = 3). However,
we have no analytical proof for this statement.

I
\\\\g\y\\
i

L
“ \\i:\ij\\““ / // // 4/,,

i
i
i

(a) Plot of ® for r = 3. (b) Plot of 0.
FIGURE 1

Conjecture 2. In a normed linear space (X, || - ||), the following inequality

1 = r— 1 r— r—
5y =z, yllyll i — (y —x, 2| 2>s)§17"|\y*$|\max{llx\| Sl

holds for any z,y € X whenever r > 2; otherwise it holds for any nonzero

z,y € X (here, (-,-)5() is the superior (inferior) semi-inner product respect to
the norm || - ||).

We observe that the above statement is true in some cases. Taking (X, ||-||) =

(R%,|| - |[1) and consider the case of r = 1, we have the functions
1 Yi Zi
flzy) = 3 > m(yi—li)— S lyi—wil =Y m(yi—mi)_ >y — il |
vir0 1Y =0 270 ! ;=0

1
g(z,y) Elly—wlll
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for z,y € R%. We observe that f(z,y) < g(z,y) for some z,y € X (We
choose © = (1,0) and y = (a,b) (a,b # 0) and plot the non negative function

(a,b) = g(z,y) — fl@,9) =t =1+ b)) = § (252 + 5 — (a—1) — [bl)
in Figure 1). However, we do not have an analytical proof for this statement.
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