FUZZY ω^{O} -OPEN SETS

TALAL AL-HAWARY

ABSTRACT. In this paper, we introduce the relatively new notion of fuzzy ω^O -open set. We prove that the collection of all fuzzy ω^O -open subsets of a fuzzy topological space forms a fuzzy topology that is finer than the original one. Several characterizations and properties of this class are also given as well as connections to other well-known "fuzzy generalized open" subsets.

1. Introduction

Fuzzy topological spaces were first introduced by [1, 2]. Let (X, \mathfrak{T}) be a fuzzy topological space (simply, Fts). If λ is a fuzzy set (simply, F-set), then the closure of λ , the interior of λ and the derived set of λ will be denoted by $Cl_{\mathfrak{T}}(\lambda)$, $Int_{\mathfrak{T}}(\lambda)$ and $d_{\mathfrak{T}}(\lambda)$, respectively. If no ambiguity appears, we use $\overline{\lambda}, \lambda$ and λ' instead, respectively. A F-set λ is called *F-semi-open* (simply, *FSO*) [6] if there exists a fuzzy open (simply, F-open) set μ such that $\mu \leq \lambda \leq Cl_{\mathfrak{T}}(\mu)$. Clearly λ is a FSO-set if and only if $\lambda \leq Cl_{\mathfrak{T}}(Int_{\mathfrak{T}}(\lambda))$. A complement of a FSO-set is called *F-semi-closed* (simply, *FSC*). λ is called *fuzzy preopen* (simply, *FPO*) if $\lambda \leq Int_{\mathfrak{T}}(Cl_{\mathfrak{T}}(\lambda))$. Finally, λ is called *fuzzy regular-open* (simply, *FRO*) if $\lambda = Int_{\mathfrak{T}}(Cl_{\mathfrak{T}}(\lambda))$. Complements of FRO-sets are called *fuzzy regularclosed* (simply, *FRC*). The collection of all FSO (resp., FPO, FRO and FRC) subsets of X will be denoted by $FSO(X, \mathfrak{T})$ (resp., *FPO*(X, \mathfrak{T}), *FRO*(X, \mathfrak{T}) and $FRC(X, \mathfrak{T})$). For more on the preceding notions, the reader is referred to [1, 2, 3, 6, 8].

Our goal in this paper is to introduce the new concept of fuzzy ω^{o} -open set, discuss its connection to other well-known sets and study several interesting properties and constructions of these sets in case of anti locally countable Fts.

2. Fuzzy ω^{o} -open set

We begin this section by introducing the notion of $\omega^O\text{-open}$ and $\omega^O\text{-closed}$ subsets.

O2008 The Korean Mathematical Society

Received March 9, 2008; Revised July 27, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 54A40.

Key words and phrases. fuzzy topological space, fuzzy open set, fuzzy ω^O -open.

Definition 1. A F-set λ of a Fts (X, \mathfrak{T}) is called *fuzzy* ω^{o} -*open* (simply, $F\omega^{O}$ *open*) if for every fuzzy set $\mu \leq \lambda$, there exists an F-open set η such that $\mu \leq \eta$ and $\eta - \lambda^{o}$ is countable. Complements of $F\omega^{O}$ -open sets are called *fuzzy* ω^{O} -closed (simply, $F\omega^{O}$ -closed).

Clearly every F-open set is $F\omega^{o}$ -open, but the converse needs not be true.

Example 1. Let $X = \{a, b\}$ and $\mathfrak{T} = \{0, 1, \chi_{\{a\}}\}$. Then $\chi_{\{b\}}$ is $F\omega^{o}$ -open but not F-open.

Definition 2. A F-set λ in (X, \mathfrak{T}) is countable if $\{\lambda(x) : x \in X\}$ is countable.

Next, we show that the collection of all $F\omega^{o}$ -open subsets of a Fts (X, \mathfrak{T}) forms a fuzzy topology $\mathfrak{T}_{F\omega^{o}}$ that is strictly finer than \mathfrak{T} .

Theorem 1. Let (X, \mathfrak{T}) be a Fts. Then $(X, \mathfrak{T}_{F\omega^o})$ is a Fts such that $\mathfrak{T} \subseteq \mathfrak{T}_{F\omega^o}$.

Proof. Clearly $\mathfrak{T} \subseteq \mathfrak{T}_{F\omega^o}$ and $0, 1 \in \mathfrak{T}_{F\omega^o}$. If $\lambda_1, \lambda_2 \in \mathfrak{T}_{F\omega^o}$ and $\mu \leq \lambda_1 \wedge \lambda_2$, then there exist F-open sets η_1, η_2 such that $\mu \leq \eta_1, \mu \leq \eta_2$ and both $\eta_1 - \mathring{\lambda}_1$ and $\eta_2 - \mathring{\lambda}_2$ are countable. Hence $\mu \leq \eta_1 \wedge \eta_2$ and for every $\lambda \leq \eta_1 \wedge \eta_2 - (\lambda_1 \wedge \lambda_2)^o = (\eta_1 \wedge \eta_2) - (\mathring{\lambda}_1 \wedge \mathring{\lambda}_2)$, we have $\lambda \leq \eta_1 - \mathring{\lambda}_1$ and $\lambda \leq \eta_2 - \mathring{\lambda}_2$. Thus $\eta_1 \wedge \eta_2 - (\lambda_1 \wedge \lambda_2)^o \leq \eta_1 - \mathring{\lambda}_1$ and $\eta_1 \wedge \eta_2 - (\lambda_1 \wedge \lambda_2)^o \leq \eta_2 - \mathring{\lambda}_2$ and so $\eta_1 \wedge \eta_2 - (\lambda_1 \wedge \lambda_2)^o$ is countable. Therefore, $\lambda_1 \wedge \lambda_2 \in \mathfrak{T}_{F\omega^o}$.

If $\{\lambda_{\alpha} : \alpha \in \Delta\}$ is a collection of $F\omega^{o}$ -open subsets of X, then for every $\lambda \leq \bigvee_{\alpha \in \Delta} \lambda_{\alpha}, \lambda \leq \lambda_{\beta}$ for some $\beta \in \Delta$. Hence there exists an F-open subset μ of

X such that $\lambda \leq \mu$ and $\mu - \mathring{\lambda}_{\beta}$ is countable. But $\mu - (\bigvee_{\alpha \in \Delta} \lambda_{\alpha})^o \leq \mu - \bigvee_{\alpha \in \Delta} \overleftrightarrow{\lambda}_{\alpha}^{\circ} \leq \mu - \bigwedge_{\alpha \in \Delta} \widetilde{\lambda}_{\alpha}^{\circ}$. \Box $\mu - \mathring{\lambda}_{\beta}^{o}$. Thus $\mu - (\bigvee_{\alpha \in \Delta} \lambda_{\alpha})^o$ is countable and hence $\bigvee_{\alpha \in \Delta} \lambda_{\alpha} \in \mathfrak{T}_{F\omega^o}$. \Box

Definition 3. A Fts (X, \mathfrak{T}) is called *a PFts* if for every countable collection $\{\lambda_n : n \in \mathbb{N}\}$ of F-open sets, $\bigwedge_{n \in \mathbb{N}} \lambda_n$ is a F-open set.

Corollary 1. If (X, \mathfrak{T}) is a PFts, then $\mathfrak{T} = \mathfrak{T}_{F\omega^{\circ}}$.

Proof. By Theorem 1, $\mathfrak{T} \subseteq \mathfrak{T}_{F\omega^o}$. On the other hand, if $\lambda \in \mathfrak{T}_{F\omega^o}$, then for every fuzzy set $\mu \leq \lambda$, there exists an F-open set η such that $\mu \leq \eta$ and $\eta - \lambda^o$ is countable. Thus λ can be written as $\bigwedge_{n \in \mathbb{N}} \lambda_n$, where each λ_n is a F-open set. As (X,\mathfrak{T}) is a PFts, λ is a F-open set. Therefor, $\mathfrak{T}_{F\omega^o} \subseteq \mathfrak{T}_F$ and hence $\mathfrak{T} = \mathfrak{T}_{F\omega^o}$.

Next we show that $F\omega^{o}$ -open notion is independent of both FPO and FSO ones.

Example 2. Consider the fuzzy real line $\mathbb{R}(\mathfrak{L})$ [5]. Then $\mathbb{Q}(\mathfrak{L})$ is FPO but not $F\omega^{o}$ -open. Also $[0,1](\mathfrak{L})$ is FSO but not $F\omega^{o}$ -open.

750

Example 3. In Example 1, $\lambda_{\{b\}}$ is $F\omega^o$ -open but neither FPO nor F-open.

Definition 4. A Fts (X, \mathfrak{T}) is *locally countable* if each $\mu \in X$ has a countable neighborhood.

Next we characterize $\mathfrak{T}_{F\omega^o}$ when X is a locally countable Fts.

Theorem 2. If (X, \mathfrak{T}) is a locally countable Fts, then $\mathfrak{T}_{F\omega^{\circ}}$ is the discrete fuzzy topology.

Proof. Let $\lambda \in X$ and $\mu \leq \lambda$. Since X is locally countable, there exists a countable neighborhood η of μ . Hence there exists a F-open set μ_1 such that $\mu \leq \mu_1 \leq \eta$. Since $\mu_1 - \dot{\lambda} \leq \eta - \dot{\lambda}$, $\mu_1 - \dot{\lambda}$ is countable. Therefore λ is $F\omega^o$ -open and so $\mathfrak{T}_{F\omega^{\circ}}$ is the discrete fuzzy topology.

Corollary 2. If (X, \mathfrak{T}) is a countable Fts, then $\mathfrak{T}_{F\omega^o}$ is the discrete fuzzy topology.

Next, a new characterization of $F\omega^{o}$ -open subsets is given. It will be used most often throughout the rest of this paper.

Lemma 1. A F-set λ of a Fts (X, \mathfrak{T}) is $F\omega^{o}$ -open if and only if for every $\mu \leq \lambda$, there exists a F-open set $\eta \geq \mu$ and a countable F-set C_{η} such that $\eta - C_n \leq \check{\lambda}.$

Proof. Let $\lambda \in \mathfrak{T}_{F\omega^o}$ and $\mu \leq \lambda$. Then there exists a F-open subset $\eta \geq \lambda$ such that $\eta - \hat{\lambda}$ is countable. Let $C_{\eta} = \eta - \hat{\lambda} = \eta \wedge (\hat{\lambda})$. Then $\eta - C_{\eta} \leq \hat{\lambda}$. Conversely, let $\mu \leq \lambda$. Then there exists a F-open subset $\eta \geq \mu$ and a

countable subset C_{μ} such that $\eta - C_{\mu} \leq \overset{o}{\lambda}$. Thus $\eta - \overset{o}{\lambda} = C_{\mu}$ is countable. \Box

The following is an immediate result that follows from Theorem 1:

Lemma 2. A F-set λ of a Fts (X, \mathfrak{T}) is $F\omega^{\circ}$ -closed if and only if $Cl_{F\omega^{\circ}}(\lambda) = \lambda$. **Theorem 3.** If λ is $F\omega^{\circ}$ -open subset of a Fts (X, \mathfrak{T}) , then $\mathfrak{T}_{F\omega^{\circ}}|_{\lambda} \subseteq (\mathfrak{T}|_{\lambda})_{F\omega^{\circ}}$.

Proof. Let $\mu \in \mathfrak{T}_{F\omega^o}|_{\lambda}$. Then $\mu = \lambda \wedge \eta$ for some $F\omega^o$ -open subset η . For every $\lambda_1 \leq \mu, \, \lambda_1 \leq \lambda \in \mathfrak{T}_{F\omega^o}$ and so there exist *F*-open $\lambda_2 \geq \lambda_1$ and countable set C_{λ_2} such that $\lambda_2 - C_{\lambda_2} \leq \mathring{\eta} = \eta$. Now $\lambda_2 \wedge \lambda \in \mathfrak{T}|_{\lambda}$ and

$$\begin{array}{rcl} \lambda_2 \wedge \lambda - C_{\lambda_2} &=& (\lambda_2 - C_{\lambda_2}) \wedge \lambda \\ &\leq& \mathring{\eta} \wedge \lambda \\ &=& \mathring{\eta} \wedge \lambda^o \\ &\leq& \mathring{\mu}. \end{array}$$

Therefore, $\mu \in (\mathfrak{T}|_{\lambda})_{F\omega^{o}}$.

Corollary 3. If λ is F-open subset of X, then $\mathfrak{T}_{F\omega^{\circ}}|_{\lambda} \subseteq (\mathfrak{T}|_{\lambda})_{F\omega^{\circ}}$.

In the next example, we show that if λ in the preceding theorem is not $\mathcal{F}\omega^o\text{-}\mathrm{open},$ then the result needs not be true.

Example 4. Consider the fuzzy real line $\mathbb{R}(\mathfrak{L})$ and let $\lambda = (\mathbb{R}\setminus\mathbb{Q})(\mathfrak{L})$. Then λ is not $F\omega^{o}$ -open and so not F-open. As $(0,1)(\mathfrak{L})$ is $F\omega^{o}$ -open, then $d = ((0,1) \wedge \lambda)(\mathfrak{L}) \in \mathfrak{T}_{F\omega^{o}}|_{\lambda}$ while if $d \in (\mathfrak{T}|_{\lambda})_{F\omega^{o}}$ then for every $\mu \leq d$, there exists $\eta \in \mathfrak{T}|_{\lambda}$ and a countable F-set C_{μ} such that $\mu - C_{\mu} \leq \overset{o}{C}_{\mu} = 0$. Thus $\eta \leq C_{\mu}$ and hence η is countable which is a contradiction.

Theorem 4. If (X, \mathfrak{T}) is a Fts in which every countable set of F-points is F-closed, then $(\mathfrak{T}|_{\lambda})_{F\omega^{\circ}} \subseteq \mathfrak{T}_{F\omega^{\circ}}|_{\lambda}$.

Proof. Let $\mu \in (\mathfrak{T}|_{\lambda})_{F\omega^{o}}$ and $\eta \leq \mu$. Then there exist $\lambda_{*} \geq \eta$ and a countable set $C_{\lambda_{*}}$ of F-points such that $C_{\lambda_{*}} \leq \lambda$ and $\lambda - C_{\lambda_{*}} \leq \mu$. But $\lambda_{*} = \eta_{1} \wedge \lambda$ for some F-open set η_{1} . Hence $\eta_{1} \in \mathfrak{T}_{F\omega^{o}}$. Now

$$(\eta_1 - C_{\lambda_*}) \wedge \lambda = (\eta_1 \wedge \lambda) - C_{\lambda_*} = \lambda_* - C_{\lambda_*} \leq \mathring{\lambda}_1.$$

Moreover, $\eta_1 - \lambda_* \in \mathfrak{T}_{F\omega^o}$ as for every $\delta \leq \eta_1 - C_{\lambda_*}$, η_1 is an F-open set, $\delta \leq \eta_1$ and C_{λ_*} is a countable subset such that

$$\lambda_1 - C_{\lambda_*} \leq (\eta_1 - C_{\lambda_*})^o = \mathring{\eta}_1 \wedge (\mathring{C}_{\lambda_*})' = \eta_1 \wedge (\mathring{C}_{\lambda_*})' = \eta_1 \wedge \acute{C}_{\lambda_*} = \eta_1 - C_{\lambda_*}.$$

Therefore, $\mu \in \mathfrak{T}_{F\omega^o}|_{\lambda}.$

Next, we show that if (X, \mathfrak{T}) is a Fts having a countable set A of F-points that is not F-closed, then $(\mathfrak{T}|_A)_{F\omega^o} \subsetneq \mathfrak{T}_{F\omega^o}|_{A}$.

Example 5. Consider the fuzzy real line $\mathbb{R}(\mathfrak{L})$ and let $\lambda_1 = \mathbb{Q}(\mathfrak{L})$ and $\lambda_2 = (0,1)(\mathfrak{L})$. If $\lambda_2 \in \mathfrak{T}_{F\omega^o}|_{\lambda_1}$, then $\lambda_2 = \mu \wedge \lambda_1$ for some $\mu \in \mathfrak{T}_{F\omega^o}$, which is impossible since $\sqrt{2} \leq \lambda_2 - \lambda_1$. On the other hand, let $\eta \leq \lambda_2$. If $\eta \leq \lambda_1$, pick $q_1, q_2 \leq \lambda$ such that $0 < q_1 < \eta < q_2 < 2$ and let $\delta = (q_1, q_2)(\mathfrak{L}) \wedge \lambda_1$. Then $\eta \leq \delta - 0 \leq \lambda_2 - \mathring{\lambda}_2$. If $\eta \notin \lambda_1$, then pick $q_1, q_2 \notin \lambda_1$ such that $0 < q_1 < \eta < q_2 < 2$ and let $\delta = (q_1, q_2)(\mathfrak{L}) \wedge \lambda_1$. Then $\eta \leq \delta - 0 \leq \lambda_2 = \mathring{\lambda}_2$. Thus in both cases $\lambda_2 \in (\mathfrak{T}|_{\lambda_1)F\omega^o}$.

Definition 5 ([2, 4]). A family $\{\lambda_{\alpha} : \alpha \in \Delta\}$ of F-open subsets of a Fts (X, \mathfrak{T}) is called a *fuzzy cover* (simply, *F-cover*) of X if $\bigvee \lambda_{\alpha} = X$.

Definition 6 ([7]). A Fts (X, \mathfrak{T}) is called *fuzzy Lindelöf* (simply, *F-Lindelöf*) if every F-cover of X has a countable subcover.

Lemma 3. If X is a Lindelöf Fts, then $\lambda - \lambda$ is countable for every F-closed subset $\lambda \in \mathfrak{T}_{F\omega^{\circ}}$.

Proof. Let λ be an F-closed set such that $\lambda \in \mathfrak{T}_{F\omega^o}$. If λ is F-open, then $\lambda - \overset{o}{\lambda} = 0$ is countable. Otherwise, as $\lambda \in \mathfrak{T}_{F\omega^o}$, then for every $\mu \leq \lambda$, there exists a F-open set $\eta_{\mu} \geq \mu$ such that $\eta_{\mu} - \overset{o}{\lambda}$ is countable. Thus $\{\eta_{\mu} : \mu \leq \lambda\}$ is a F-cover for λ and as λ is Lindelöf, it has a countable subcover $\{\eta_n : n \in \mathbb{N}\}$. Hence $\lambda - \overset{o}{\lambda} = \bigvee_{n \in \mathbb{N}} (\eta_n - \overset{o}{\lambda})$ is countable. \Box

Definition 7 ([8]). A Fts (X, \mathfrak{T}) is called *second countable* if it has a countable base of F-open sets.

Corollary 4. If (X, \mathfrak{T}) is a second countable Fts, then $\lambda - \lambda^{o}$ is countable for every closed subset $\lambda \in \mathfrak{T}_{F\omega^{o}}$.

We remark that the preceding result needs not hold for ω^o -closed sets as shown next.

Example 6. Consider $\mathbb{R}(\mathfrak{L})$ with the standard topology and let $\lambda = \mathbb{Q}$. Then $\lambda \leq \mathbb{R}(\mathfrak{L}) \vee \mathbb{Q}$ but λ is not ω^{o} -closed.

Theorem 5. Let (X, \mathfrak{T}) be a Fts and λ is a $F\omega^{\circ}$ -closed set. Then $Cl_{\mathfrak{T}}(\lambda) \leq \mu \vee \eta$ for some F-closed subset μ and a countable F-set η .

Proof. Since λ is $F\omega^{o}$ -closed, $\dot{\lambda}$ is $F\omega^{o}$ -open and hence for every $\delta \leq \dot{\lambda}$, there exist a F-open set $\sigma \geq \delta$ and a countable set η such that $\sigma - \eta \leq (\dot{\lambda})^{o} = (Cl_{\mathfrak{T}}(\lambda))$. Thus

$$Cl_{\mathfrak{T}}(C) \leq (\sigma - \eta)' \leq (\sigma \wedge \eta)' \leq 1 \wedge (\sigma \vee \eta) \leq \sigma \vee \eta.$$

Letting $\mu = \dot{\sigma}$. Then μ is F-closed such that $Cl_{\mathfrak{T}}(\lambda) \leq \mu \vee \eta$.

3. Anti locally countable Fts

In this section, several interesting properties and constructions of $F\omega^{o}$ -open subsets are discussed in case of anti locally countable Fts.

Definition 8. A Fts (X, \mathfrak{T}) is called *anti locally countable* if every non-zero F-open set is uncountable.

Theorem 6. A Fts (X, \mathfrak{T}) is anti locally countable if and only if $(X, \mathfrak{T}_{F\omega^{\circ}})$ is anti locally countable.

Proof. Let $\lambda \in \mathfrak{T}_{F\omega^o}$ and $\mu \leq \lambda$. By Lemma 1, there exist a F-open subset $\eta \geq \mu$ and a countable F-set C_{μ} such that $\eta - C_{\mu} \leq \overset{o}{\lambda}$. Hence $\overset{o}{\lambda}$ is uncountable and so is λ . The converse follows from the fact that every F-open subset is $F\omega^o$ -open.

Corollary 5. If (X, \mathfrak{T}) is anti locally countable Fts and λ is $F\omega^{\circ}$ -open, then $Cl_{\mathfrak{T}}(\lambda) = Cl_{\mathfrak{T}_{F\omega^{\circ}}}(\lambda)$, where $Cl_{\mathfrak{T}_{F\omega^{\circ}}}(\lambda)$ is the closure of λ in $(X, \mathfrak{T}_{F\omega^{\circ}})$.

Proof. Clearly $Cl_{\mathfrak{T}_{F\omega^o}}(\lambda) \leq Cl_{\mathfrak{T}}(\lambda)$. On the other hand, let $\mu \leq Cl_{\mathfrak{T}}(\lambda)$ and η be an $F\omega^o$ -open subset such that $\eta \geq \mu$. Then by Lemma 1, there exist a F-open subset $\delta \geq \mu$ and a countable F-set σ such that $\delta - \sigma \leq \mathring{\eta}$. Thus $(\delta - \sigma) \wedge \lambda \leq \mathring{\eta} \wedge \lambda$ and so $(\delta \wedge \lambda) - \sigma \leq \mathring{\eta} \wedge \lambda$. As $\mu \leq Cl_{\mathfrak{T}}(\lambda)$, $\delta \wedge \lambda \neq 0$ and as δ and λ are $F\omega^o$ -open, $\delta \wedge \lambda$ is $F\omega^o$ -open and as X is an locally countable, $\delta \wedge \lambda$ is uncountable and so is $(\delta \wedge \lambda) - \sigma$. Thus $\eta \wedge \lambda$ is uncountable as it contains the uncountable set $\mathring{\eta} \wedge \lambda$. Therefore, $\eta \wedge \lambda \neq 0$ which means $\mu \leq Cl_{\mathfrak{T}_{F\omega^o}}(\lambda)$. \Box

TALAL AL-HAWARY

By a similar argument, we can easily prove the following result.

Corollary 6. If (X, \mathfrak{T}) is anti locally countable Fts and λ is $F\omega^{o}$ -closed, then $Int_{\mathfrak{T}}(\lambda) = Int_{\mathfrak{T}_{F\omega^{o}}}(\lambda), \text{ where } Int_{\mathfrak{T}_{F\omega^{o}}}(\lambda) \text{ is the interior of } \lambda \text{ in } (X, \mathfrak{T}_{F\omega^{o}}).$

Definition 9. A F-set λ in a Fts (X, \mathfrak{T}) is called an F α -(resp., F β -) set if $\lambda \leq Int_{\mathfrak{T}}(Cl_{\mathfrak{T}}(Int_{\mathfrak{T}}(\lambda))) \text{ (resp., } \lambda \leq Cl_{\mathfrak{T}}(Int_{\mathfrak{T}}(Cl_{\mathfrak{T}}(\lambda)))).$

The set of all F α -(resp., F β -) sets of a Fts (X, \mathfrak{T}) will be denoted by $F\alpha(X, \mathfrak{T})$ (resp., $F\beta(X,\mathfrak{T})$). Clearly every F-open set is both $F\alpha$ -open and $F\beta$ -open and every $F\beta$ -open is $F\alpha$ -open and $F\alpha(X,\mathfrak{T}) = FSO(X,\mathfrak{T}) \cap FPO(X,\mathfrak{T}).$

Theorem 7. Let (X,\mathfrak{T}) be an anti locally countable Fts. Then $F\alpha(X,\mathfrak{T}) \subseteq$ $F\alpha(X, \mathfrak{T}_{F\omega^o}).$

Proof. If $\lambda \in F\alpha(X, \mathfrak{T})$, then $\lambda \leq Int_{\mathfrak{T}}(Cl_{\mathfrak{T}}(Int_{\mathfrak{T}}(\lambda)))$ and by Corollary 5, $\lambda \leq Int_{\mathfrak{T}}(Cl_{\mathfrak{T}_{F\omega^{o}}}(Int_{\mathfrak{T}}(\lambda))).$ Now by Corollary 6 and as $Cl_{\mathfrak{T}_{F\omega^{o}}}(Int_{\mathfrak{T}}(\lambda))$ is $F\omega^{o}$ -closed, $\lambda \leq Int_{\mathfrak{T}_{F\omega^{o}}}(Cl_{\mathfrak{T}_{F\omega^{o}}}(Int_{\mathfrak{T}}(\lambda)))$ and by Corollary 6 again, $\lambda \leq Int_{\mathfrak{T}_{F\omega^{o}}}(Int_{\mathfrak{T}}(\lambda))$ $Int_{\mathfrak{T}_{F\omega^{o}}}(Cl_{\mathfrak{T}_{F\omega^{o}}}(Int_{\mathfrak{T}_{F\omega^{o}}}(\lambda)))$ which means $\lambda \in F\alpha(X, \mathfrak{T}_{F\omega^{o}}).$

The converses of the preceding result needs not be true.

Example 7. Consider the Fts from Example 1. Then $\lambda = \chi_{\{b\}} \in F\alpha(X, \mathfrak{T}_{F\omega^o})$ but $\lambda \notin F\alpha(X, \mathfrak{T})$.

Similarly, one can show that in an anti locally countable Fts, $F\beta(X, \mathfrak{T}_{F\omega^o}) \subseteq$ $F\beta(X,\mathfrak{T})$. Recall that a F-point μ in a Fts (X,\mathfrak{T}) is a fuzzy cluster point of a F-set λ if for every F-open set $\eta \geq \mu, \eta \wedge \lambda - \mu \neq 0$. The set of all cluster points of λ will be denoted by $d_{\mathfrak{T}}(\lambda)$.

Theorem 8. Let (X,\mathfrak{T}) be an anti locally countable Fts. Then $d_{\mathfrak{T}}(\lambda) =$ $d_{\mathfrak{T}_{F\omega^{o}}}(\lambda)$ for every F-set λ .

Proof. If $\mu \in d_{\pi}(\lambda)$ and η is any $F\omega^{o}$ -open subset such that $\eta \geq \mu$, then there exist a F-open subset $\delta \geq \mu$ and a countable σ such that $\delta - \sigma \leq \eta \leq \eta$. Since $\delta \wedge \lambda - \mu \neq 0$ and as $(\sigma \wedge \lambda - \mu) - \sigma = (\delta - \sigma) \wedge (\lambda - \mu)$ is uncountable subset of $\eta \wedge \lambda - \mu$, $\eta \wedge \lambda - \mu \neq 0$ and hence $\mu \in d_{\mathfrak{T}_{F\omega^o}}(\lambda)$.

The converse is obvious as every F-open subset is $F\omega^{o}$ -open.

Theorem 9. Let (X, \mathfrak{T}) be an anti locally countable Fts. Then

 $FRO(X, \mathfrak{T}) = FRO(X, \mathfrak{T}_{F\omega^o}).$

Proof. If $\lambda \in FRO(X, \mathfrak{T})$, then $\lambda = Int_{\mathfrak{T}}(Cl_{\mathfrak{T}}(\lambda))$. By Corollary 5, $\lambda =$ $Int_{\mathfrak{T}}(Cl_{\mathfrak{T}_{F\omega^o}}(\lambda))$ and by Corollary 6 and as $Cl_{\mathfrak{T}_{F\omega^o}}(\lambda)$ is $F\omega^o$ -closed, $\lambda =$ $Int_{\mathfrak{T}_{F\omega^{o}}}(Cl_{\mathfrak{T}_{F\omega^{o}}}(\lambda))$ which means $\lambda \in FRO(X, \mathfrak{T}_{F\omega^{o}})$.

Conversely, if $\lambda \in FRO(X, \mathfrak{T}_{F\omega^o})$, then $\lambda = Int_{\mathfrak{T}_{F\omega^o}}(Cl_{\mathfrak{T}_{F\omega^o}}(\lambda))$. As λ is $F\omega^{o}$ -open, by Corollary 5, $\lambda = Int_{\mathfrak{T}_{F\omega^{o}}}(Cl_{\mathfrak{T}}(\lambda))$ and as $Cl_{\mathfrak{T}}(\lambda)$ is $F\omega^{o}$ -closed being a F-closed set, then $\lambda = Int_{\mathfrak{T}}(Cl_{\mathfrak{T}}(\lambda))$ which means $\lambda \in FRO(X, \mathfrak{T})$. \Box

The converse of the preceding result needs not be true.

754

Example 8. Let $X = \{a, b, c, d, e\}$ and $\mathfrak{T} = \{0, 1, \chi_{\{a\}}, \chi_{\{a,b\}}, \chi_{\{a,b,c\}}, \chi_{\{a,b,c\}}\}$. Then (X, \mathfrak{T}) is an anti locally countable Fts where $FRO(X, \mathfrak{T}) = \{0, 1\}$ while $FRO(X, \mathfrak{T}_{F\omega^o}) = \mathfrak{T}$.

We end this section by showing that $(X, \mathfrak{T}_{F\omega^{\circ}})$ is Urysohn when (X, \mathfrak{T}) is an anti locally countable Fts.

Definition 10. A Fts (X, \mathfrak{T}) is *Urysohn* if for every two distinct F-sets δ and σ , there exist two F-open sets λ and μ such that $\delta \leq \lambda$, $\sigma \leq \mu$ and $Cl_{\mathfrak{T}}(\lambda) \wedge Cl_{\mathfrak{T}}(\mu) = 0$.

Corollary 7. Let (X, \mathfrak{T}) be an anti locally countable Fts that is Urysohn. Then $(X, \mathfrak{T}_{F\omega^{\circ}})$ is Urysohn.

Proof. If $\delta \neq \sigma$ in X, then there exist F-open sets λ and μ such that $\delta \leq \lambda$, $\sigma \leq \mu$ and $Cl_{\mathfrak{T}}(\lambda) \wedge Cl_{\mathfrak{T}}(\mu) = 0$. By Corollary 5, $Cl_{\mathfrak{T}_{F\omega^o}}(\lambda) \wedge Cl_{\mathfrak{T}_{F\omega^o}}(\mu) = Cl_{\mathfrak{T}}(\lambda) \wedge Cl_{\mathfrak{T}}(\mu) = 0$.

Acknowledgment. The author would like to thank the referees for useful comments and suggestions.

References

- M. K. Chakrabarty and T. M. G. Ahsanullah, Fuzzy topology on fuzzy sets and tolerance topology, Fuzzy Sets and Systems 45 (1992), no. 1, 103–108.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] A. K. Chaudhuri and P. Das, Some results on fuzzy topology on fuzzy sets, Fuzzy Sets and Systems 56 (1993), no. 3, 331–336.
- [4] A. H. Eş, Almost compactness and near compactness in fuzzy topological spaces, Fuzzy Sets and Systems 22 (1987), no. 3, 289–295.
- [5] T. E. Gantner and R. C. Steinlange, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), no. 3, 547–562.
- [6] F. S. Mahmoud, M. A. Fath Alla, and S. M. Abd Ellah, Fuzzy topology on fuzzy sets: fuzzy semicontinuity and fuzzy semiseparation axioms, Appl. Math. Comput. 153 (2004), no. 1, 127–140.
- [7] C. K. Wong, Covering properties of fuzzy topological spaces, J. Math. Anal. Appl. 43 (1973), 697–704.
- [8] _____, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316–328.

DEPARTMENT OF MATHEMATICS & STATISTICS MU'TAH UNIVERSITY P. O. BOX 6, KARAK-JORDAN *E-mail address:* talahawary@yahoo.com