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ON THE STABILITY OF A GENERALIZED CUBIC
FUNCTIONAL EQUATION

Heejeong Koh and DongSeung Kang

Abstract. In this paper, we obtain the general solution of a general-
ized cubic functional equation, the Hyers-Ulam-Rassias stability, and the
stability by using the alternative fixed point for a generalized cubic func-

tional equation

4f(
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j=1
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X
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= 8f(
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X

j=1

xj) + 4m2
n−1
X

j=1

“

f(xj + xn) + f(xj − xn)
”

for a positive integer m ≥ 1.

1. Introduction

The stability theory of functional equations started with the talk of S. M. Ul-
am held at the Wisconsin University in 1940 as follows: Under what condition
does there exist an additive mapping near an approximately additive mapping?
see [19].

The first partial solution to Ulam’s question was provided by D. H. Hyers [7].
Let X and Y are Banach spaces with norms ∥ · ∥ and ∥ · ∥, respectively. Hyers
showed that if a function f : X → Y satisfies the following inequality

∥ f(x + y) − f(x) − f(y) ∥≤ ϵ

for all ϵ ≥ 0 and for all x, y ∈ X, then the limit

a(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ X and a : X → Y is the unique additive function such that

∥ f(x) − a(x) ∥≤ ϵ

for any x ∈ X.

Thirty seven years after Hyers’s Theorem, Th. M. Rassias in his paper [12],
provided a remarkable generalization of Hyers’s result by allowing for the first
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time in the subject of functional equations and inequalities the Cauchy differ-
ence to be unbounded. This fact rekindled interest of several mathematicians
worldwide in the study of several important functional equations of several
variables. In 1990, Th. M. Rassias [16] during the 27th International Sym-
posium on Functional Equations asked the question whether his Theorem can
also be proved for all real values of p that are greater or equal to one. In 1991,
Z. Gajda following Th. M. Rassias’ approach to stability of functional equa-
tions obtained an affirmative solution to this question for all real values of p
that are strictly greater than one; see [5].

The cubic function f(x) = cx3 (c ∈ R) satisfies the functional equation

(1.1) f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 12f(x).

The equation (1.1) was solved by Jun and Kim [11]. They proved that a
function f : X → Y is a solution of the equation (1.1) if and only if there exists
a function F : X×X×X → Y such that f(x) = F (x, x, x) for all x ∈ X, and F
is symmetric for each fixed one variable and is additive for fixed two variables;
see [11]. We promise that by a cubic function we mean every solution of the
equation (1.1) is called a cubic function. Also, the equation (1.1) is equivalent
to the following equation (see [2, Lemma 2.1]);

(1.2) f(x + 2y) + f(x − 2y) + f(2x) = 2f(x) + 4f(x + y) + 4f(x − y).

Recently, the n-dimensional cubic functional equation was investigated by
Chu and Kang [2]. Also, G. Isac and Th. M. Rassias [10] were the first math-
ematicians to apply the Hyers-Ulam-Rassias stability approach for the proof
of new fixed point theorems. For an extensive account on the development of
fixed point theory and related topics the reader is referred to the book; see [8].

In this paper, we will investigate the Hyers-Ulam-Rassias stability and the
stability by using the alternative fixed point for a generalized cubic functional
equation as follows:

(1.3)

4f(
n−1∑
j=1

xj + mxn) + 4f(
n−1∑
j=1

xj − mxn) + m2
n−1∑
j=1

f(2xj)

= 8f(
n−1∑
j=1

xj) + 4m2
n−1∑
j=1

(
f(xj + xn) + f(xj − xn)

)
for all x1, . . . , xn ∈ X, where m ≥ 1 is an integer number.

2. Generalized cubic functional equation

Lemma 2.1. Let X and Y be real vector spaces. A function f : X → Y
satisfies the functional equation (1.3) if and only if f is cubic. Therefore, every
solution of functional equations (1.3) is also a cubic function.
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Proof. Suppose that f satisfies the equation (1.3) for each integer m ≥ 1.
In particular, when m = 2, we know that f satisfying (1.3) is cubic; see [2,
Lemma 2.2]. Hence we note that the case m = 2 can implies the equation
(1.2). It is easy to check that f(0) = 0 and f(2x) = 8f(x) for all x ∈ X. First,
we start with the case where m = 1 ; by letting x1 = x1 +xn and x1 = x1−xn,
we have

4f(
n−1∑
j=1

xj + 2xn) + 4f(
n−1∑
j=1

xj) + f(2(x1 + xn)) +
n−1∑
j=2

f(2xj)

= 8f(
n−1∑
j=1

xj + xn) + 4(f(x1 + 2xn) + f(x1))

+ 4
n−1∑
j=2

(
f(xj + xn) + f(xj − xn)

)
,

and,

4f(
n−1∑
j=1

xj − 2xn) + 4f(
n−1∑
j=1

xj) + f(2(x1 − xn)) +
n−1∑
j=2

f(2xj)

= 8f(
n−1∑
j=1

xj − xn) + 4(f(x1 − 2xn) + f(x1))

+ 4
n−1∑
j=2

(
f(xj + xn) + f(xj − xn)

)
for all x1, . . . , xn ∈ X, respectively.

Adding two above equations and using cases where m = 1, 2 and x1 =
x, xn = y, we have

f(x + 2y) + f(x − 2y) + f(2x) = 2f(x) + 4
(
f(x + y) + f(x − y)

)
for all x, y ∈ X. Hence f is cubic when m = 1. Now for any integer m ≥ 3,
letting x1 = x1 + xn and x1 = x1 − xn in the equation (1.3) we have

4f(
n−1∑
j=1

xj + (m + 1)xn) + 4f(
n−1∑
j=1

xj − (m − 1)xn)

+ m2f(2(x1 + xn)) + m2
n−1∑
j=2

f(2xj)

= 8f(
n−1∑
j=1

xj + xn) + 4m2(f(x1 + 2xn) + f(x1))
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+ 4m2
n−1∑
j=2

(
f(xj + xn) + f(xj − xn)

)
,

4f(
n−1∑
j=1

xj + (m − 1)xn) + 4f(
n−1∑
j=1

xj − (m + 1)xn)

+ m2f(2(x1 − xn)) + m2
n−1∑
j=2

f(2xj)

= 8f(
n−1∑
j=1

xj − xn) + 4m2(f(x1 − 2xn) + f(x1))

+ 4m2
n−1∑
j=2

(
f(xj + xn) + f(xj − xn)

)
for all x1, . . . , xn ∈ X, respectively. Adding two above equations and using
cases where m = 1, 2,m + 1 we have

4f(
n−1∑
j=1

xj + (m − 1)xn) + 4f(
n−1∑
j=1

xj − (m − 1)xn) + (m − 1)2
n−1∑
j=1

f(2xj)

= 8f(
n−1∑
j=1

xj) + 4(m − 1)2
n−1∑
j=1

(
f(xj + xn) + f(xj − xn)

)
for all x1, . . . , xn ∈ X. By using above method and induction, we infer the
cases where m = 1 or m = 2, that is, it is cubic. Conversely, suppose that f
satisfies the equation (1.2). Because of Lemma 2.2 of [2], we will show that
the cases m = 1 and then m ≥ 3 integers. Since f satisfies the equation (1.2),
we may use the equation (1.3) with m = 2 ; see [2, Lemma 2.2]. By putting
x =

∑n−1
j=1 xj and y = xn, we have

f(
n−1∑
j=1

xj + 2xn) + f(
n−1∑
j=1

xj − 2xn) + f(2
n−1∑
j=1

xj)

= 2f(
n−1∑
j=1

xj) + 4f(
n−1∑
j=1

xj + xn) + 4f(
n−1∑
j=1

xj − xn).

By using case m = 2 and f(2x) = 8f(x), we have the desired result when
m = 1 in the equation (1.3). Next, similar to the previous step and induction
with the cases m = 1, 2 and m = t, it is easy to show that

4f(
n−1∑
j=1

xj + (t + 1)xn) + 4f(
n−1∑
j=1

xj − (t + 1)xn) + (t + 1)2
n−1∑
j=1

f(2xj)
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= 8f(
n−1∑
j=1

xj) + 4(t + 1)2
n−1∑
j=1

(
f(xj + xn) + f(xj − xn)

)
for all x1, . . . , xn ∈ X. Thus the f satisfying the equation (1.2) implies the
equation (1.3) for each integer m ≥ 1. ¤

3. Stability

Throughout in this section, let X be a normed vector space with norm ∥ · ∥
and Y a Banach space with norm ∥ · ∥. For the given mapping f : X → Y, we
define
(3.1)

Df(x1, . . . , xn) := 4f(
n−1∑
j=1

xj + mxn) + 4f(
n−1∑
j=1

xj − mxn) + m2
n−1∑
j=1

f(2xj)

− 8f(
n−1∑
j=1

xj) − 4m2
n−1∑
j=1

(
f(xj + xn) + f(xj − xn)

)
for all x1, . . . , xn ∈ X and each integer m ≥ 1.

Theorem 3.1. Let f : X → Y be a mapping for which there exists a function
ϕ : Xn → [0,∞) such that

(3.2) ϕ̃(x1, . . . , xn) :=
∞∑

j=0

(
1
8
)jϕ(2jx1, . . . , 2jxn) < ∞,

(3.3) ∥ Df(x1, . . . , xn) ∥≤ ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ X. Then there exists a unique cubic mapping C : X → Y
such that

(3.4) ∥ f(x) − C(x) ∥≤ 1
8m2 s

ϕ̃(x, . . . , x︸ ︷︷ ︸
s−terms

, 0, . . . , 0)

for all x ∈ X, and each integer m ≥ 1 and s ≥ 1.

Proof. By letting xj = x (j = 1, . . . , s) and xk = 0 (k = s + 1, . . . , n) in the
equation (3.3), we have

(3.5) ∥ f(x) − 1
8
f(2x) ∥≤ 1

8m2 s
ϕ(x, . . . , x︸ ︷︷ ︸

s−terms

, 0, . . . , 0)

for all x ∈ X. Replacing x by 2x in the equation (3.5), we have

(3.6) ∥ f(2x) − 1
8
f(22x) ∥≤ 1

8m2 s
ϕ(2x, . . . , 2x︸ ︷︷ ︸

s−terms

, 0, . . . , 0),



744 HEEJEONG KOH AND DONGSEUNG KANG

for all x ∈ X. Now, combining equations (3.5) and (3.6), we get

∥ f(x)− (
1
8
)2f(22x) ∥≤ 1

8m2 s

(
ϕ(x, . . . , x︸ ︷︷ ︸

s−terms

, 0, . . . , 0) +
1
8
ϕ(2x, . . . , 2x︸ ︷︷ ︸

s−terms

, 0, . . . , 0)
)

for all x ∈ X.
Continue this way, we may have

(3.7) ∥ f(x) − (
1
8
)tf(2tx) ∥ ≤ 1

8m2 s

t−1∑
j=0

(
1
8
)jϕ(2jx, . . . , 2jx︸ ︷︷ ︸

s−terms

, 0, . . . , 0)

for all positive integer t and all x ∈ X. For any positive integer r, dividing the
equation (3.7) by 8r and then substituting x by 2rx, we have

(
1
8
)r ∥ f(2rx) − (

1
8
)tf(2r+tx) ∥

≤ (
1
8
)r · 1

8m2 s

t−1∑
j=0

(
1
8
)jϕ(2r+jx, . . . , 2r+jx︸ ︷︷ ︸

s−terms

, 0, . . . , 0)

for all x ∈ X.
By taking r → ∞, we may conclude that {( 1

8 )tf(2tx)} is a Cauchy sequence
in a Banach space Y. This implies that the sequence {( 1

8 )tf(2tx)} converges.
Hence we can define a function C : X → Y by

C(x) = lim
t→∞

(
1
8
)tf(2tx)

for all x ∈ X. Then

∥ DC(x1, . . . , xn) ∥ = lim
t→∞

(
1
8
)t ∥ Df(2tx, . . . , 2txn) ∥

≤ lim
t→∞

(
1
8
)tϕ(2tx1, . . . , 2txn)

= 0

for all x1, . . . , xn ∈ X. That is, DC(x1, . . . , xn) = 0. By Lemma 2.1, the func-
tion C : X → Y is cubic. It only remains to show that the function C is unique.
Let C ′ : X → Y be another cubic function satisfying the equation (3.4). Then

∥ C(x) − C ′(x) ∥ = (
1
8
)t ∥ C(2tx) − C ′(2tx) ∥

≤ (
1
8
)t(∥ C(2tx) − f(2tx) ∥ + ∥ f(2tx) − C ′(2tx) ∥)

≤ (
1
8
)t 1

8
ϕ̃(2tx, . . . , 2tx︸ ︷︷ ︸

s−terms

, 0, . . . , 0)

for all x ∈ X. As t → ∞, we can conclude that C(x) = C ′(x) for all x ∈ X;
that is, C is unique. ¤
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Theorem 3.2. Let f : X → Y be a mapping for which there exists a function
ϕ : Xn → [0,∞) such that

(3.8) ϕ̃(x1, . . . , xn) :=
∞∑

j=1

8jϕ(2−jx1, . . . , 2−jxn) < ∞,

(3.9) ∥ Df(x1, . . . , xn) ∥≤ ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ X. Then there exists a unique cubic mapping C : X → Y
such that

(3.10) ∥ f(x) − C(x) ∥≤ 1
m2 s

ϕ̃(x, . . . , x︸ ︷︷ ︸
s−terms

, 0, . . . , 0)

for all x ∈ X, and each integer m ≥ 1 and s ≥ 1.

Proof. If x is replaced by 1
2x in the equation (3.5) in the proof of Theorem 3.1,

we have ∣∣∣|f(x) − 8f(
1
2
x)

∣∣∣| ≤ 1
m2

ϕ(
1
2
x, . . . ,

1
2
x︸ ︷︷ ︸

s−terms

, 0, . . . , 0)

for all x ∈ X. The remains of the proof are similar to the proof of Theorem 3.1.
¤

4. Stability using alternative fixed point

In this section, we will investigate the stability of the given cubic functional
equation (3.1) using the alternative fixed point. Before proceeding the proof,
we will state the theorem, the alternative of fixed point.

Theorem 4.1 (The alternative of fixed point [4], [17]). Suppose that we are
given a complete generalized metric space (Ω, d) and a strictly contractive map-
ping T : Ω → Ω with Lipschitz constant L. Then for each given x ∈ Ω, either

d(Tnx, Tn+1x) = ∞ for all n ≥ 0,

or there exists a natural number n0 such that
(1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(2) The sequence (Tnx) is convergent to a fixed point y∗ of T ;
(3) y∗ is the unique fixed point of T in the set

△ = {y ∈ Ω | d(Tn0x, y) < ∞} ;

(4) d(y, y∗) ≤ 1
1−L d(y, Ty) for all y ∈ △.

Now, let ϕ : Xn → [0,∞) be a function such that

lim
r→∞

ϕ(λr
i x1, . . . , λ

r
i xn)

λ3r
i

= 0

for all x1, . . . , xn ∈ X, where λi = 2 if i = 0 and λi = 1
2 if i = 1.
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Theorem 4.2. Suppose that a function f : X → Y satisfies the functional
inequality

(4.1) ∥ Df(x1, . . . , xn) ∥≤ ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ X. If there exists L = L(i) < 1 such that the function

(4.2) x 7→ ψ(x) =
1

m2s
ϕ(

1
2
x, . . . ,

1
2
x︸ ︷︷ ︸

s−terms

, 0, . . . , 0)

has the property

(4.3) ψ(x) ≤ L · λ3
i · ψ(

x

λi
)

for all x ∈ X, then there exists a unique cubic function C : X → Y such that
the inequality

(4.4) ∥ f(x) − C(x) ∥≤ L1−i

1 − L
ψ(x)

holds for all x ∈ X.

Proof. Consider the set
Ω = {g | g : X → Y }

and introduce the generalized metric on Ω,

d(g, h) = dψ(g, h) = inf{K ∈ (0,∞) | ∥ g(x) − h(x) ∥ ≤ Kψ(x), x ∈ X}.

It is easy to show that (Ω, d) is complete. Now we define a function T : Ω → Ω
by

Tg(x) =
1
λ3

i

g(λix)

for all x ∈ X. Note that for all g, h ∈ Ω,

d(g, h) < K ⇒ ∥ g(x) − h(x) ∥≤ Kψ(x) for all x ∈ X,

⇒ ∥ 1
λ3

i

g(λix) − 1
λ3

i

h(λix) ∥≤ 1
λ3

i

Kψ(λix) for all x ∈ X,

⇒ ∥ 1
λ3

i

g(λix) − 1
λ3

i

h(λix) ∥≤ LKψ(x) for all x ∈ X,

⇒ d(Tg, Th) ≤ LK.

Hence we have that
d(Tg, Th) ≤ Ld(g, h)

for all g, h ∈ Ω, that is, T is a strictly self-mapping of Ω with the Lipschitz
constant L. By setting y = 0, we have the equation (3.5) as in the proof of
Theorem 3.1 and we use the equation (4.3) with the case where i = 0, which is
reduced to

∥ f(x) − 1
8
f(2x) ∥≤ 1

m2s

1
23

ψ(2x) ≤ Lψ(x)
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for all x ∈ X, that is, d(f, Tf) ≤ L = L1 < ∞. Now, replacing x by 1
2x in the

equation (3.5), multiplying 8, and using the equation (4.3) with the case where
i = 1, we have that

∥ f(x) − 23f(
x

2
) ∥≤ ψ(x)

for all x ∈ X, that is, d(f, Tf) ≤ 1 = L0 < ∞. In both cases we can apply
the fixed point alternative and since limr→∞ d(T rf, C) = 0, there exists a fixed
point C of T in Ω such that

(4.5) C(x) = lim
r→∞

f(λr
i x)

λ3r
i

for all x ∈ X. Letting xj = λr
i xj (j = 1, . . . , n) in the equation (4.1) and

dividing by λ3r
i ,

∥ DC(x1, . . . , xn) ∥ = lim
r→∞

∥ Df(λr
i x1, . . . , λ

r
i xn) ∥

λ3r

≤ lim
r→∞

∥ ϕ(λr
i x1, . . . , λ

r
i xn) ∥

λ3r
= 0

for all x1, . . . , xn ∈ X ; that is, it satisfies the equation (1.3). By Lemma 2.1,
the C is cubic. Also, the fixed point alternative guarantees that such a C is
the unique function such that

∥ f(x) − C(x) ∥≤ K ψ(x)

for all x ∈ X and some K > 0. Again using the fixed point alternative, we have

d(f, C) ≤ 1
1 − L

d(f, Tf).

Hence we may conclude that

d(f, C) ≤ L1−i

1 − L
,

which implies the equation (4.4). ¤
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