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ON MULTI-JENSEN FUNCTIONS AND
JENSEN DIFFERENCE

Krzysztof Ciepliński

Abstract. In this paper we characterize multi-Jensen functions f : V n→
W , where n is a positive integer, V, W are commutative groups and V is
uniquely divisible by 2. Moreover, under the assumption that f : R → R
is Borel measurable, we obtain representation of f (respectively, f, g, h :
R → R) such that the Jensen difference

2f

„

x + y

2

«

− f(x) − f(y)

(respectively, the Pexider difference

2f

„

x + y

2

«

− g(x) − h(y))

takes values in a countable subgroup of R.

1. Introduction

In 2005 W. Prager and J. Schwaiger (see [23]) introduced the notion of
multi-Jensen functions f : V n −→ W (V and W being vector spaces over
the rationals) with the connection with generalized polynomials. On the other
hand, the stability of the Jensen functional equation

2f

(
x + y

2

)
= f(x) + f(y)

(f satisfying this equation is called a Jensen mapping) was studied by a number
of mathematicians (see for instance [20], [10], [17], [16] and [7]).

Speaking of the stability of a functional equation we follow the question of
S. Ulam: “when is it true that the solution of an equation differing slightly from
a given one, must of necessity be close to the solution of the given equation?”
(see [25]). As the words “differing slightly” and “be close” may have various
meanings, different kinds of stability can be dealt with (see for instance [15]).
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In 2006 J.-H. Bae and W.-G. Park (see [1]) gave the general solution the
system of equations {

2f(x+y
2 , z) = f(x, z) + f(y, z),

2f(x, y+z
2 ) = f(x, y) + f(x, z),

where f : V 2 −→ W and V,W are vector spaces. Under some additional
assumptions they also proved the stability of this system.

Our first goal is to generalize these results. More precisely, generalizing
some outcomes from [23] and [1], we obtain the form of multi-Jensen functions
in the case when V,W are commutative groups and V is uniquely divisible
by 2. Moreover, we generalize some results from [16] and [1] dealing with the
stability in the spirit of P. Gavruta (see [12] and also [21], [22]).

From an example of G. Godini (see [14]) it can be seen that it is not generally
true that a function f : R −→ R for which the Cauchy difference

f(x + y) − f(x) − f(y)

belongs to Z for all x, y ∈ R has to be of the form A+k, where A is an additive
mapping and k takes integer values only. However, such a representation is
possible under some regularity condition imposed on f . It seems that J. G. van
der Corput was the first who gave such a condition (see [9]). Further results
and their generalizations (also concerning the Pexider difference

f(x + y) − g(x) − h(y))

were obtained for instance by K. Baron, PL. Kannappan, J. Brzdȩk, N. Frantzi-
kinakis, M. Bajger and the author (see [4], [5], [11], [2], and [8]).

Later the Jensen difference

2f

(
x + y

2

)
− f(x) − f(y)

(see [5], [13], and [19]) as well as the “quadratic” difference

f(x + y) + f(x − y) − 2f(x) − 2f(y)

(see [6] and [18]) were also investigated.
The second aim of this paper is to study the Jensen difference and the

Pexider difference

2f

(
x + y

2

)
− g(x) − h(y),

where f, g, h : R → R. Under the assumption that f is Borel measurable we ob-
tain representation of f (respectively, f, g and h) with the Jensen (respectively,
Pexider) difference taking values in a countable subgroup of R.
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2. Main results

2.1. Multi-Jensen functions

We follow the notation used in [23].
Denote by |S| the cardinality of the finite set S and put

n := {1, . . . , n}, n ∈ N,

where N stands for the set of all positive integers.
Let V,W be commutative groups and V be uniquely divisible by 2. For sets

S, T with S ⊆ T and x = (xt)t∈T ∈ V T , let xS := x |S∈ V S , i.e., x |S is the
restriction of the mapping x : T −→ V to S. For y ∈ V S let yT ∈ V T be given
by

(yT )S := y and (yT )T\S := 0.

Let us also recall that a function f : V T −→ W is called multi-additive or T -
additive if it is additive in each variable. Similarly, define f to be multi-Jensen
or T -Jensen if it is a Jensen mapping in each variable.

Since (see Theorem 1.4 in [5]) every Jensen function f : V −→ W is of the
form

f(x) = a(x) + c, x ∈ V

with, uniquely determined, a c ∈ W and an additive mapping a : V −→ W , we
have the following

Lemma 2.1. Let V,W be commutative groups and V be uniquely divisible by
2. Assume also that T is a set and f : V T → W . Then f is multi-additive if
and only if it is a multi-Jensen mapping such that for any i ∈ T, x ∈ V T with
x(i) = 0 we have f(x) = 0.

Finally, for T ⊆ S ⊆ n and y ∈ V S we write yn
T for (yT )n, i.e., yn

T = z ∈ V n

with zT = yT and zn\T = 0.
Our first theorem characterizes multi-Jensen functions.

Theorem 2.2. Let V,W be commutative groups and V be uniquely divisible
by 2. Assume also that n ∈ N and f : V n −→ W . Then f is multi-Jensen if
and only if there is a family (MS)S⊆n of S-additive functions such that

(1) f(x) =
∑
S⊆n

MS(xS), x ∈ V n.

Proof. Assume that f : V n → W is multi-Jensen and put

(2) MS(y) =
∑
T⊆S

(−1)|S\T |f(xn
T ), y ∈ V S , S ⊆ n,

where x := yn. We shall show that these mappings are multi-additive.
Fix an S ⊆ n and note that for every T ⊆ S the mapping V S ∋ y 7−→

f(yn
T ) = f(xn

T ) ∈ W is multi-Jensen and, in consequence, so is MS . Take
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i ∈ S, y ∈ V S with y(i) = 0 and let x := yn. Clearly, if T ⊂ S and i ∈ S \ T ,
then xn

T = xn
T∪{i}. Therefore,

MS(y) =
∑

T⊆S,i∈S\T

(−1)|S\T |f(xn
T ) +

∑
T⊆S,i∈S\T

(−1)|S\(T∪{i})|f(xn
T∪{i})

=
∑

T⊆S,i∈S\T

(−1)|S\T |(f(xn
T ) − f(xn

T )) = 0,

and the multi-additivity of MS follows from Lemma 2.1.
Next, note that∑

S⊆n

MS(xS) =
∑
S⊆n

∑
T⊆S

(−1)|S\T |f(xn
T ) =

∑
T⊆n

αT f(xn
T ),

where
αT :=

∑
T⊆S⊆n

(−1)|S\T | =
∑

U⊆n\T

(−1)|U |.

But

αT =
{

1, T = n,∑|n\T |
l=0

(|n\T |
l

)
(−1)l = 0, T ̸= n,

and therefore ∑
S⊆n

MS(xS) = f(xn
n) = f(x), x ∈ V n,

that is (1) holds.
On the other hand, if the function f is given by (1), where (MS)S⊆n is a

family of S-additive mappings, then the fact that it is multi-Jensen follows from
obvious fact that for every S ⊆ n so is the function V n ∋ x 7−→ MS(xS) ∈
W . ¤

2.2. Stability

Our next theorem generalizes Theorem 6 from [1] (see also Theorems 1 and
2 and Corollary 3 in [16]).

Theorem 2.3. Let V be a commutative group uniquely divisible by 2 and W
be a Banach space. Assume also that n ∈ N and for every i ∈ n, φi : V n+1 →
[0,∞) is a mapping such that

(3)

φ̃i(x1, . . . , xn+1)

:=
∞∑

j=0

1
3j+1

[φi(3jx1, x2, . . . , xn+1) + · · ·

+ φi(x1, . . . , xi−2, 3jxi−1, xi, . . . , xn+1)

+ φi(x1, . . . , xi−1, 3jxi, 3jxi+1, xi+2, . . . , xn+1)

+ φi(x1, . . . , xi+1, 3jxi+2, xi+3, . . . , xn+1) + · · ·
+ φi(x1, . . . , xn, 3jxn+1)] < ∞, (x1, . . . , xn+1) ∈ V n+1.
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If f : V n −→ W is a function satisfying

(4)

∥2f(x1, . . . , xi−1,
xi + x′

i

2
, xi+1, . . . , xn) − f(x1, . . . , xn)

− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)∥

≤ φi(x1, . . . , xi, x
′
i, xi+1, . . . , xn),

(x1, . . . , xi, x
′
i, xi+1, . . . , xn) ∈ V n+1, i ∈ n,

then for every i ∈ n there exists a multi-Jensen mapping Fi : V n → W for
which

(5)

∥f(x1, . . . , xn) − f(x1, . . . , xi−1, 0, xi+1, . . . , xn) − Fi(x1, . . . , xn)∥
≤ φ̃i(x1, . . . , xi,−xi, xi+1, . . . , xn)

+ φ̃i(x1, . . . , xi−1,−xi, 3xi, xi+1, . . . , xn), (x1, . . . , xn) ∈ V n.

For every i ∈ n the function Fi is given by

(6)
Fi(x1, . . . , xn)

:= lim
j→∞

1
3j

f(x1, . . . , xi−1, 3jxi, xi+1, . . . , xn), (x1, . . . , xn) ∈ V n.

Proof. Fix x1, . . . , xn ∈ V and i ∈ n. By (4) we get

∥2f(x1, . . . , xi−1, 0, xi+1, . . . , xn) − f(x1, . . . , xn)

− f(x1, . . . , xi−1,−xi, xi+1, . . . , xn)∥
≤ φi(x1, . . . , xi,−xi, xi+1, . . . , xn)

and

∥2f(x1, . . . , xn) − f(x1, . . . , xi−1,−xi, xi+1, . . . , xn)

− f(x1, . . . , xi−1, 3xi, xi+1, . . . , xn)∥
≤ φi(x1, . . . , xi−1,−xi, 3xi, xi+1, . . . , xn).

Hence

∥3f(x1, . . . , xn) − f(x1, . . . , xi−1, 3xi, xi+1, . . . , xn)

− 2f(x1, . . . , xi−1, 0, xi+1, . . . , xn)∥
≤ φi(x1, . . . , xi,−xi, xi+1, . . . , xn)

+ φi(x1, . . . , xi−1,−xi, 3xi, xi+1, . . . , xn),
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and consequently for any non-negative integers l and m such that l < m we
obtain

(7)

∥ 1
3l

f(x1, . . . , xi−1, 3lxi, xi+1, . . . , xn)

− 1
3m

f(x1, . . . , xi−1, 3mxi, xi+1, . . . , xn)

−
m−1∑
j=l

2
3j+1

f(x1, . . . , xi−1, 0, xi+1, . . . , xn)∥

≤
m−1∑
j=l

1
3j+1

[φi(x1, . . . , xi−1, 3jxi,−3jxi, xi+1, . . . , xn)

+ φi(x1, . . . , xi−1,−3jxi, 3j+1xi, xi+1, . . . , xn)].

Therefore from (3) it follows that ( 1
3j f(x1, . . . , xi−1, 3jxi, xi+1, . . . , xn))j∈N is

a Cauchy sequence. Since the space W is complete, this sequence is convergent
and we define Fi : V n −→ W by (6). Putting l = 0, letting m −→ ∞ in (7)
and using (3) we see that (5) holds.

Finally, fix x′
i ∈ V, j ∈ N and note that according to (4) we have

∥ 2
3j

f(x1, . . . , xi−1, 3j xi + x′
i

2
, xi+1, . . . , xn)

− 1
3j

f(x1, . . . , xi−1, 3jxi, xi+1, . . . , xn)

− 1
3j

f(x1, . . . , xi−1, 3jx′
i, xi+1, . . . , xn)∥

≤ 1
3j

φi(x1, . . . , xi−1, 3jxi, 3jx′
i, xi+1, . . . , xn).

Next, fix k ∈ n \ {i}, x′
k ∈ V and assume that k < i (the same arguments

apply to the case where k > i). From (4) it follows that

∥ 2
3j

f(x1, . . . , xk−1,
xk + x′

k

2
, xk+1, , . . . , xi−1, 3jxi, xi+1, . . . , xn)

− 1
3j

f(x1, . . . , xi−1, 3jxi, xi+1, . . . , xn)

− 1
3j

f(x1, . . . , xk−1, x
′
k, xk+1, . . . , xi−1, 3jxi, xi+1, . . . , xn)∥

≤ 1
3j

φk(x1, . . . , xk, x′
k, xk+1, . . . , xi−1, 3jxi, xi+1, . . . , xn).

Letting j → ∞ in the above inequalities and using (3) we see that the mapping
Fi is multi-Jensen. ¤
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2.3. Jensen and Pexider differences

The results of this section correspond to some outcomes from [13], [19] and
[5] (see also Theorem in [11] and Theorem 2 in [8]). The first one deals with
the Jensen difference.

Theorem 2.4. Let E be a countable subgroup of R. If f : R −→ R satisfies

(8) 2f

(
x + y

2

)
− f(x) − f(y) ∈ E, x, y ∈ R

and f is Borel measurable, then there exists a c ∈ R such that

f(x) − f(0) − cx ∈ E, x ∈ R.

Proof. Put

f̂(x) := f(x) − f(0), x ∈ R.

Then from (8) it follows that

2f̂

(
x + y

2

)
− f̂(x) − f̂(y) ∈ E, x, y ∈ R,

whence, setting y := 0, we get

2f̂
(x

2

)
− f̂(x) ∈ E, x ∈ R.

These two relations give

f̂(x + y) − f̂(x) − f̂(y)

= 2f̂

(
x + y

2

)
− f̂(x) − f̂(y) + f̂(x + y) − 2f̂

(
x + y

2

)
∈ E, x, y ∈ R.

Since the mapping f̂ is Borel measurable, our assertion follows from Theorem
in [11]. ¤

We finish with a theorem concerning the Pexider difference.

Theorem 2.5. Let E be a countable subgroup of R. If f, g, h : R → R satisfy

(9) 2f

(
x + y

2

)
− g(x) − h(y) ∈ E, x, y ∈ R

and f is Borel measurable, then there exists a c ∈ R such that

(10)

 2f(x) − 2f(0) − 2cx ∈ E,
g(x) − g(0) − cx ∈ E, x ∈ R.
h(x) − h(0) − cx ∈ E,
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Proof. Put

f̂(x) := f(x) − f(0), ĝ(x) := g(x) − g(0), ĥ(x) := h(x) − h(0), x ∈ R.

Then from (9) it follows that

(11) 2f̂

(
x + y

2

)
− ĝ(x) − ĥ(y) ∈ E, x, y ∈ R.

Set
f̃(x) := 2f̂

(x

2

)
, x ∈ R

and note that in view of (11) we have

(12) f̃(x + y) − ĝ(x) − ĥ(y) ∈ E, x, y ∈ R.

Putting y := 0 and x := 0 in (12) separately we see that

(13)

{
f̃(x) − ĝ(x) ∈ E, x ∈ R,

f̃(y) − ĥ(y) ∈ E, y ∈ R.

(12) and (13) give

f̃(x + y) − f̃(x) − f̃(y)

= f̃(x + y) − ĝ(x) − ĥ(y) + ĝ(x) − f̃(x) + ĥ(y) − f̃(y) ∈ E, x, y ∈ R.

Since the mapping f̃ is Borel measurable, from Theorem in [11] it follows that
there is a c ∈ R such that f̃(x) − cx ∈ E for x ∈ R. This together with the
definition of f̃ and (13) finishes the proof. ¤

Note added in proof. Recently Hyers-Ulam stability of the multi-Jensen
equation in the case when V,W are vector spaces over the rationals was inves-
tigated by W. Prager and J. Schwaiger (see [24]).
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