ON f-DERIVATIONS OF LATTICES

Yilmaz Çeven and Mehmet Ali Öztürk

Abstract

In this paper, as a generalization of derivation on a lattice, the notion of f-derivation for a lattice is introduced and some related properties are investigated.

1. Introduction and preliminaries

Lattices play an important role in many fields such as information theory, information retrieval, information access controls and cryptanalysis $[2,6,13,8]$. Recently the properties of lattices were widely researched $[1,2,5,7,8,9,13,14]$.

In the theory of rings and near rings, the properties of derivations are an important topic to study $[3,4,11,12]$. Y. B. Jun and X. L. Xin [10] applied the notion of derivation in ring and near ring theory to BCI-algebras. In [15], J. Zhan and Y. L. Liu introduced the notion of left-right (or right-left) f derivation of a BCI algebra and investigated some properties. In [14], X. L. Xin, T. Y. Li, and J. H. Lu introduced the notion of derivation on a lattice and discussed some related properties.

In this paper, as a generalization of derivation on a lattice, the notion of f derivation of a lattice is introduced and some related properties, which are discussed in [14] for a derivation on a lattice, are investigated for the f-derivation on a lattice. As important results of f-derivations on lattices, distributive and modular lattices are characterized by f-derivations under some conditions.
Definition 1 ([5]). Let L be a nonempty set endowed with operations \wedge and \vee. Then (L, \wedge, \vee) is called a lattice if it satisfies the following conditions for all $x, y, z \in L:$
(1) $x \wedge x=x, x \vee x=x$,
(2) $x \wedge y=y \wedge x, x \vee y=y \vee x$,
(3) $(x \wedge y) \wedge z=x \wedge(y \wedge z),(x \vee y) \vee z=x \vee(y \vee z)$,
(4) $(x \wedge y) \vee x=x,(x \vee y) \wedge x=x$.

Definition 2 ([5]). A lattice L is called a distributive lattice if it satisfies the identity (5) or (6) for all $x, y, z \in L$:
(5) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$,

[^0](6) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.

Definition 3 ([1]). A lattice L is called a modular lattice if it satisfies the following condition for all $x, y, z \in L$:
(7) If $x \leq z$, then $x \vee(y \wedge z)=(x \vee y) \wedge z$.

Definition $4([5])$. Let (L, \wedge, \vee) be a lattice. A binary relation \leq is defined by $x \leq y$ if and only if $x \wedge y=x$ and $x \vee y=y$.
Definition 5 ([5]). Let L and M be two lattices. The function $g: L \longrightarrow M$ is called a lattice homomorphism if it satisfies the following conditions for all $x, y \in L$:
(8) $g(x \wedge y)=g(x) \wedge g(y)$,
(9) $g(x \vee y)=g(x) \vee g(y)$.

It is known that a homomorphism is called an epimorphism if it is onto.
Lemma 1 ([14]). Let (L, \wedge, \vee) be a lattice. Define the binary relation \leq as the Definition 4. Then (L, \leq) is a poset and for any $x, y \in L, x \wedge y$ is the g.l.b of $\{x, y\}$ and $x \vee y$ is the l.u.b. of $\{x, y\}$.
Definition 6 ([14]). A function $d: L \longrightarrow L$ on a lattice L is called a derivation on L if it satisfies the following condition

$$
d(x \wedge y)=(d x \wedge y) \vee(x \wedge d y)
$$

The abbreviation $d x$ is used for $d(x)$ in the above definition.
Definition 7 ([14]). Let L be a lattice and d be a derivation on L.
(1) If $x \leq y$ implies $d x \leq d y, d$ is called an isotone derivation,
(2) If d is one-to-one, d is called a monomorphic derivation,
(3) If d is onto, d is called an epimorphic derivation.

2. The f-derivations in lattices

The following definition introduces the notion of f-derivations on lattices.
Definition 8. Let L be a lattice. A function $d: L \longrightarrow L$ is called an f derivation on L if there exists a function $f: L \longrightarrow L$ such that

$$
\begin{equation*}
d(x \wedge y)=(d(x) \wedge f(y)) \vee(f(x) \wedge d(y)) \tag{2.1}
\end{equation*}
$$

for all $x, y \in L$.
It is obvious in the Definition 8 that if f is an identity function then d is a derivation on L. Furthermore, according to Definition 8, a function d on L can be an f-derivation only when a function f satisfying equation (2.1) exists. But, to obtain some results, d or f must satisfy some additional conditions as in the following propositions and theorems.

In this paper, we'll abbreviate $d(x)$ as $d x$ and $f(x)$ as $f x$.
Example 1. Let L be the lattice of Figure 1 and define a function d by $d 0=0$, $d a=a, d b=a, d c=c, d 1=c$.

Figure 1
Then d is not a derivation on L since $a=d(b \wedge 1) \neq(d b \wedge 1) \vee(b \wedge d 1)=$ $(a \wedge 1) \vee(b \wedge c)=a \vee b=b$. If we define a function f by $f 0=0, f a=a, f b=$ $a, f c=1, f 1=1$, then d satisfies the equation (2.1) for all $x, y \in L$ and so d is an f-derivation on L.

Example 2. Let L be a lattice and $a \in L$. Define a function $d: L \longrightarrow L$ by $d x=f x \wedge a$ for all $x \in L$ where $f: L \longrightarrow L$ satisfies $f(x \wedge y)=f x \wedge f y$ for all $x, y \in L$. Then d is an f-derivation. In addition, if f is an increasing function then d is an isotone derivation.

Proposition 1. Let L be a lattice and d be an f-derivation on L. Then the following identities hold for all $x, y \in L$.
a) $d x \leq f x$,
b) $d x \wedge d y \leq d(x \wedge y) \leq d x \vee d y$,
c) $d(x \wedge y) \leq f x \vee f y$,
d) If L has a least element 0 , then $f 0=0$ implies $d 0=0$.

Proof. a) Since $d x=d(x \wedge x)=d x \wedge f x$, we have $d x \leq f x$.
b) We have $d x \wedge f y \leq d(x \wedge y)$ and $f x \wedge d y \leq d(x \wedge y)$ from the equation (2.1). Since $d x \leq f x$, we obtain $d x \wedge d y \leq f x \wedge d y$ and hence we have $d x \wedge d y \leq$ $d(x \wedge y)$. We know that $d x \wedge f y \leq d x$ and $f x \wedge d y \leq d y$. Then we obtain $d(x \wedge y)=(d x \wedge f y) \vee(f x \wedge d y) \leq d x \vee d y$.
c) Since $d x \wedge f y \leq f y$ and $f x \wedge d y \leq f x$, we obtain $d(x \wedge y) \leq f x \vee f y$.
d) Since $d x \leq f x$ for all $x \in L, f 0=0$ and 0 is the least element of L, we have $0 \leq d 0 \leq f 0=0$.

Proposition 2. Let L be a lattice and d be an f-derivation and 1 be the greatest element of L and $f 1=1$. Then the following identities hold;
a) If $f x \leq d 1$, then $d x=f x$,
b) If $f x \geq d 1$, then $d x \geq d 1$.

Proof. a) Since $d x=d(x \wedge 1)=(d x \wedge f 1) \vee(f x \wedge d 1)=d x \vee f x$, we have $f x \leq d x$. From Proposition 1 a), we obtain $d x=f x$.
b) Since $d x=(d x \wedge f 1) \vee(f x \wedge d 1)=d x \vee d 1$, we have $d x \geq d 1$.

Remark 1. Note that if $d 1=1$, since $d 1 \leq f 1$, we have $f 1=1$ where 1 the greatest element of L. In this case, from Proposition 2 a), we get $d=f$.

Let L be a lattice and d be an f-derivation of L. Define a set $F=$ $\{x \in L: d x=f x\}$.
Proposition 3. Let L be a lattice and d be an f-derivation. If f is an increasing function, then $y \leq x$ and $x \in F$ implies $y \in F$.

Proof. Note that, since $x \in F$ and $d y \leq f y \leq f x=d x$, we get $d y=d(x \wedge y)=$ $(d x \wedge f y) \vee(f x \wedge d y)=(f x \wedge f y) \vee d y=f y \vee d y=f y$.

Proposition 4. Let L be a lattice and d be an isotone f-derivation on L. Then for any $x, y \in L, d x=d x \vee(f x \wedge d(x \vee y))$.

Proof. Since d is an isotone f-derivation, we know that for all $x, y \in L, d x \leq$ $d(x \vee y) \leq f(x \vee y)$. Hence we have $d x=d((x \vee y) \wedge x)=(d(x \vee y) \wedge f x) \vee$ $(f(x \vee y) \wedge d x)=d x \vee(f x \wedge d(x \vee y))$.
Proposition 5. Let L be a lattice and d be an isotone f-derivation. If $x, y \in F$ and f is a decreasing function, then $x \vee y \in F$.

Proof. Since $x \leq x \vee y$ and $y \leq x \vee y$, we have $f(x \vee y) \leq f x$ and $f(x \vee y) \leq f y$ respectively. Then we obtain $f(x \vee y) \leq f x \vee f y=d x \vee d y \leq d(x \vee y)$ since d is an isotone f-derivation. It is known that $d(x \vee y) \leq f(x \vee y)$, hence we get $x \vee y \in F$.

Theorem 1. Let L be a lattice with greatest element 1 and d be an f-derivation on L. Let $f 1=1$ and $f(x \wedge y)=f x \wedge$ fy for all $x, y \in L$. Then the following conditions are equivalent:
(1) d is an isotone f-derivation,
(2) $d x \vee d y \leq d(x \vee y)$,
(3) $d x=f x \wedge d 1$,
(4) $d(x \wedge y)=d x \wedge d y$.

Proof. (1) $\Longrightarrow(2)$: Suppose that d is an isotone f-derivation. We know that $x \leq x \vee y$ and $y \leq x \vee y$. Since d is isotone, $d x \leq d(x \vee y)$ and $d y \leq d(x \vee y)$. Hence we obtain $d x \vee d y \leq d(x \vee y)$.
$(2) \Longrightarrow(1):$ Suppose that $d x \vee d y \leq d(x \vee y)$ and $x \leq y$. Then we have $d x \leq d x \vee d y \leq d(x \vee y)=d y$.
$(1) \Longrightarrow(3)$: Suppose that d is an isotone f-derivation. We have $d x \leq d 1$. It is known that $d x \leq f x$ from Proposition 1 a). Then we get $d x \leq f x \wedge d 1$. From Proposition 4, for $y=1$, we have $d x=d x \vee(f x \wedge d 1)=f x \wedge d 1$.
$(3) \Longrightarrow(4):$ Assume that (3) holds. Then $d(x \wedge y)=f(x \wedge y) \wedge d 1=$ $f x \wedge f y \wedge d 1=(f x \wedge d 1) \wedge(f y \wedge d 1)=d x \wedge d y$.
$(4) \Longrightarrow(1):$ Let $d(x \wedge y)=d x \wedge d y$ and $x \leq y$. Since $d x=d(x \wedge y)=d x \wedge d y$, we get $d x \leq d y$.

Theorem 2. Let L be a modular lattice and d be an f-derivation on L.
(a) d is an isotone f-derivation if and only if $d(x \wedge y)=d x \wedge d y$,
(b) If d is an isotone f-derivation where $f(x \vee y)=f x \vee f y$, then $d x=f x$ implies $d(x \vee y)=d x \vee d y$.

Proof. (a) Suppose that d is an isotone f-derivation. Since $x \wedge y \leq x$ and $x \wedge y \leq y$, we get $d(x \wedge y) \leq d x$ and $d(x \wedge y) \leq d y$. Hence $d(x \wedge y) \leq d x \wedge d y$. Also using Proposition 1 a) and the fact $d x \wedge f y \leq d x \leq f x$, we get

$$
\begin{aligned}
d x \wedge d y & =(d x \wedge d y) \wedge(f x \wedge f y) \\
& \leq(d x \vee d y) \wedge(f x \wedge f y) \\
& =((d y \vee d x) \wedge f y) \wedge f x \\
& =(d y \vee(d x \wedge f y)) \wedge f x \\
& =((d x \wedge f y) \vee d y) \wedge f x \\
& =(d x \wedge f y) \vee(f x \wedge d y) \\
& =d(x \wedge y) .
\end{aligned}
$$

Conversely, let $d(x \wedge y)=d x \wedge d y$ and $x \leq y$. Since $d x=d(x \wedge y)=d x \wedge d y$, we have $d x \leq d y$.
(b) Suppose that d is an isotone f-derivation and $d x=f x$. Using Proposition 4 and since L is modular lattice, we have

$$
\begin{aligned}
d y & =d y \vee(f y \wedge d(x \vee y)) \\
& =(d y \vee f y) \wedge d(x \vee y) \\
& =f y \wedge d(x \vee y)
\end{aligned}
$$

Hence using the hypothesis, we obtain

$$
\begin{aligned}
d x \vee d y & =d x \vee(f y \wedge d(x \vee y)) \\
& =(d x \vee f y) \wedge d(x \vee y) \\
& =(f x \vee f y) \wedge d(x \vee y) \\
& =f(x \vee y) \wedge d(x \vee y) \\
& =d(x \vee y) .
\end{aligned}
$$

Theorem 3. Let L be a distributive lattice and d be an f-derivation on L where $f(x \vee y)=f x \vee f y$. Then the following hold:
(1) d is an isotone f-derivation implies $d(x \wedge y)=d x \wedge d y$,
(2) d is an isotone f-derivation if and only if $d(x \vee y)=d x \vee d y$.

Proof. (1) Since d is isotone f-derivation, we know that $d(x \wedge y) \leq d x \wedge d y$. From Proposition 1 a), we get

$$
\begin{aligned}
d x \wedge d y & =(d x \wedge f x) \wedge(d y \wedge f y) \\
& =(d x \wedge f y) \wedge(f x \wedge d y)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \quad(d x \wedge f y) \vee(f x \wedge d y) \\
& =d(x \wedge y) .
\end{aligned}
$$

Hence we have $d(x \wedge y)=d x \wedge d y$.
(2) Let d is an isotone f-derivation. From (1), we have $d(x \wedge y)=d x \wedge d y$. Then, from Proposition 1 a) and Proposition 4, we get $d y=d y \vee(f y \wedge d(x \vee y))=$ $(d y \vee f y) \wedge(d y \vee d(x \vee y))=f y \wedge d(x \vee y)$ and similarly $d x=f x \wedge d(x \vee y)$. Then we obtain

$$
\begin{aligned}
d x \vee d y & =(f x \wedge d(x \vee y)) \vee(f y \wedge d(x \vee y)) \\
& =(f x \vee f y) \wedge d(x \vee y) \\
& =f(x \vee y) \wedge d(x \vee y) \\
& =d(x \vee y) .
\end{aligned}
$$

Conversely, suppose that $d(x \vee y)=d x \vee d y$ and $x \leq y$. Then since $d y=$ $d(x \vee y)=d x \vee d y$, we have $d x \leq d y$.

Theorem 4. Let L be a lattice. If there exists an f-derivation d on L such that $d(x \vee y)=d x \vee d y$ for all $x, y \in L$ and f is an epimorphism, then L is a distributive lattice.

Proof. We know from Example 2 that the function d defined by $d x=f x \wedge c$ for $c \in L$ where f is a homomorphism is an f-derivation on L. Also suppose that f is onto and $d(x \vee y)=d x \vee d y$ for all $x, y \in L$. Then, for all $a, b \in L$ there exist $u, v \in L$ such that $f u=a$ and $f v=b$. Hence

$$
\begin{aligned}
(a \vee b) \wedge c & =(f u \vee f v) \wedge c \\
& =f(u \vee v) \wedge c \\
& =d(u \vee v) \\
& =d u \vee d v \\
& =(f u \wedge c) \vee(f v \wedge c) \\
& =(a \wedge c) \vee(b \wedge c) .
\end{aligned}
$$

Since every distributive lattice is a modular lattice, we have the following corollary.

Corollary 1. Let L be a lattice. If there exists an f-derivation d on L such that $d(x \vee y)=d x \vee d y$ for all $x, y \in L$ and f is an epimorphism, then L is a modular lattice.

Acknowledgements. The authors are highly grateful to the referees for their valuable comments and suggestions for the paper.

References

[1] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Mo., 1974.
[2] A. J. Bell, The co-information lattice, $4^{\text {th }}$ Int. Symposium on Independent Component Analysis and Blind Signal Seperation (ICA2003), Nara, Japan, 2003, 921-926.
[3] H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339-346.
[4] H. E. Bell and G. Mason, On derivations in near-rings, Near-rings and near-fields (Tubingen, 1985), 31-35, North-Holland Math. Stud., 137, North-Holland, Amsterdam, 1987.
[5] G. Birkhoof, Lattice Theory, American Mathematical Society, New York, 1940.
[6] C. Carpineto and G. Romano, Information retrieval through hybrid navigation of lattice representations, International Journal of Human-Computers Studies 45 (1996), 553-578.
[7] C. Degang, Z. Wenxiu, D. Yeung, and E. C. C. Tsang, Rough approximations on a complete completely distributive lattice with applications to generalized rough sets, Inform. Sci. 176 (2006), no. 13, 1829-1848.
[8] G. Durfee, Cryptanalysis of RSA using algebraic and lattice methods, A dissertation submitted to the department of computer sciences and the committe on graduate studies of Stanford University (2002), 1-114.
[9] A. Honda and M. Grabisch, Entropy of capacities on lattices and set systems, Inform. Sci. 176 (2006), no. 23, 3472-3489.
[10] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), no. 3-4, 167-176.
[11] K. Kaya, Prime rings with α-derivations, Hacettepe Bull. Natural. Sci. and Eng. 16-17 (1987/1988), 63-71.
[12] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[13] R. S. Sandhu, Role hierarchies and constraints for lattice-based access controls, Proceedings of the $4^{t h}$ Europan Symposium on Research in Computer Security, Rome, Italy, 1996, 65-79.
[14] X. L. Xin, T. Y. Li, and J. H. Lu, On derivations of lattices, Inform. Sci. 178 (2008), no. 2, 307-316.
[15] J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. (2005), no. 11, 1675-1684.

Yilmaz Çeven
Department of Mathematics
Faculty of Arts and Sciences
Süleyman Demirel University
32260 Isparta, Turkey
E-mail address: yceven@fef.sdu.edu.tr
Mehmet Ali Öztürk
Department of Mathematics
Faculty of Arts and Sciences
Adiyaman University
02040 Adiyaman, Turkey
E-mail address: mehaliozturk@gmail.com

[^0]: Received January 30, 2008.
 2000 Mathematics Subject Classification. 06B35, 06B99.
 Key words and phrases. lattice, derivation, f-derivation.

