프로그래머블한 온도 보상 기법의 스마트 센서 시스템

A Smart Sensor System with a Programmable Temperature Compensation Technique

  • 김주환 (고려대학교 전자컴퓨터공학과) ;
  • 강유리 (고려대학교 전자컴퓨터공학과) ;
  • 이우관 (고려대학교 전자컴퓨터공학과) ;
  • 김수원 (고려대학교 전자컴퓨터공학과)
  • Kim, Ju-Hwan (Dept. of Computer and Electronic Eng, Korea University) ;
  • Kang, Yu-Ri (Dept. of Computer and Electronic Eng, Korea University) ;
  • Lee, Woo-Kwan (Dept. of Computer and Electronic Eng, Korea University) ;
  • Kim, Soo-Won (Dept. of Computer and Electronic Eng, Korea University)
  • 발행 : 2008.11.25

초록

본 논문에서는 MEMS 압력 센서의 스마트 센서 시스템을 구현하였다. 피에조 압력센서의 온도 드리프트 문제를 해결하기 위해 외부 환경에 맞춰 시스템이 스스로 발생 오차를 제거하는 보상 알고리즘과 이에 의해 제어되는 프로그래머블한 보정 회로를 제안하였다. 시스템은 신호처리부, 보정 회로, 온도 감지부, 그리고 마이크로프로세서 및 통신부가 SOC으로 구현되었으며, RS-232 인터페이스가 시스템의 모니터링 및 제어를 위해 사용되었다. 구현된 IC의 면적은 $4.38{\times}3.78\;mm^2$이며 $0.35{\mu}m$ CMOS 공정으로 제작되었다. $-40^{\circ}C{\sim}150^{\circ}C$ 온도 범위에서 50 KPa급 MEMS 압력센서의 온도 드리프트 보상 오차는 ${\pm}0.48%$로 측정되었다. 구현된 시스템의 전력소모는 30.5mW로 측정되었다.

In this paper, a smart sensor system for the MEMS pressure sensor was developed. A compensation algorithm and programmable calibration circuits were presented to eliminate errors caused by temperature drift of piezoresistive pressure sensors in itself. This system consisted of signal conditioning, calibration, temperature detection, microprocessor, and communication parts and these were integrated into a SOC. A RS-232 interface was employed for monitoring and control of a smart sensor system. The area of fabricated IC is $4.38{\times}3.78\;mm^2$ and a $0.35{\mu}m$ high voltage CMOS process was used. Compensation error for temperature drift of 50 KPa pressure sensors was measured into ${\pm}0.48%$ in the range of $-40^{\circ}C{\sim}150^{\circ}C$. Total power consumption was 30.5 mW.

키워드

참고문헌

  1. S. Chatzandroulis, D. Tsoukalas and Peter A. Neukomm, "A miniature pressure system with a capacitive sensor and a passive telemetry link for use in implantable applications," IEEE Journal of Microelectromechanical Systems, Vol. 9, no. 1, March 2000
  2. M. Sveda and R. Vrba, "Integrated Smart Sensor Networking Framework for Sensor-Based Appliances," IEEE Sensors Journal, Vol. 3, no. 5, Oct 2003
  3. C. H. Wu, C. A. Zorman, and M. Mehregany, "Fabrication and Testing of Bulk Micromachined Silicon Carbide Piezoresistive Pressure Sensors for High Temperature Applications," IEEE Sensors Journal, Vol. 6, no. 2, April 2006
  4. Paul C. de Jong and Gerard C. M. Meijer, "A High-Temperature Electronic System for Pressure-Transducers," IEEE Trans on Instrumentation and Measurement, Vol. 49, no. 2, Apr 2000
  5. P. Melvas and G. Stemme, " A Diode-Based Two-Wire Solution for Temperature- Compensated Piezoresistive Pressure Sensors," IEEE Trans on Electron Devices, Vol. 50, no. 2, Feb 2003
  6. A. Bakker, K. Thiele, and J. H. Huijsing, "A CMOSNested-Chopper Instrumentation Amplifier with 100-nV Offset," IEEE Journal of Solid-State Circuit, Vol. 35, no. 12, Dec 2000
  7. B. Vargha and I. Zoltan, "Calibration Algorithm for Current-Output R-2R Ladders," IEEE Trans on Instrumentation and Measurement, Vol. 50, no. 5, Oct 2001
  8. B. Greenley, R. Veith, D. Y. Chang, and U. K. Moon, "A Low-Voltage 10-Bit CMOS DAC in 0.01-mm2 Die Area," IEEE Trans. on Circuits and Systems, Vol. 52, no. 5, MAY 2005 https://doi.org/10.1109/TCSI.2005.845607
  9. J. Xi, C. Yang, A. Mason, and P. Zhong, "Adaptive Multi-Sensor Interface System-On-Chip," IEEE Sensors 2006, Daegu, Korea, pp.50-53, Oct 22-25, 2006