Rhodotorula glutinis 유래의 고효율 재조합 Epoxide Hydrolase를 이용한 라세믹 Styrene Oxide의 비대칭 광학분할

Asymmetric resolution of racemic styrene oxide using recombinant Escherichia coli harboring epoxide hydrolase of Rhodotorula glutinis

  • 박규덕 (경성대학교 공과대학 식품생명공학과) ;
  • 최성희 (경성대학교 공과대학 식품생명공학과) ;
  • 김희숙 (경성대학교 공과대학 식품생명공학과) ;
  • 이은열 (경희대학교 환경.응용화학대학 화학공학과)
  • Park, Kyu-Deok (Dept. of Food Science and Biotechnology, Kyungsung Univ.) ;
  • Choi, Sung-Hee (Dept. of Food Science and Biotechnology, Kyungsung Univ.) ;
  • Kim, Hee-Sook (Dept. of Food Science and Biotechnology, Kyungsung Univ.) ;
  • Lee, Eun-Yeol (Dept. of Chemical Engineering, Kyung Hee Univ.)
  • 발행 : 2008.10.31

초록

Rhdotorula glutinis epoxide hydrolase 유전자를 pColdI 벡터 와 pET-21b(+) 벡터에 재조합하여 제작한 E. coli를 생촉매로 사용하여 라세믹 styrene oxide에 대하여 회분식 가수분해 반응을 실시하였다. pET-21b(+)/RgEH 재조합 플라스미드 DNA를 가진 E. coli를 $15^{\circ}C$에서 저온 배양할 때 수용성 단백질 형태로 가장 많이 발현되었고, 입체선택적 가수분해 활성과 촉매 안정성이 가장 좋았다. 라세믹 styrene oxide 20 mM에 대하여 반응온도 $30^{\circ}C$에서는 반응시간 20분 동안에 수율 24.0%로 (S)-styrene oxide를 얻은 반면에, 반응온도를 $10^{\circ}C$로 낮추고 0.5% (w/v) Tween 20을 첨가하고 반응시키면 광학순도 99.0% ee 이상의 (S)-styrene oxide을 46.0%의 수율로 얻을 수 있었다. 최적조건에서 E 값은 6.68이었으며, 100 mM의 라세믹 styrene oxide에 대해서는 반응시간 50분에 이론 수율 50% 대비 40%의 높은 수율로 (S)-styrene oxide를 얻을 수 있었다.

The effects of reaction temperature and the addition of various detergents on the enantioselective hyrolysis activity of the recombinant Escherichia coli containing the epoxide hydrolase (EH) gene of Rhodotorula glutinis were investigated for the production of enantiopure styrene oxide. The recombinant E. coli harboring the EH gene from R. glutinis exhibited the enantiopreference toward (R)-styrene oxide with the maximum hydrolytic activity of $165.04{\mu}mol/min/mg$ of dry cell weight (dcw). The addition of 0.5% (w/v) Tween 20 at $10^{\circ}C$ increased the initial hydrolysis rate and enantioselectivity by 1.45-fold and 2.0-fold, respectively. Enantiopure (S)-styrene oxide was prepared with 99% ee enantiopurity and 46.0% yield (theoretical yield=50%) from 20 mM racemic styrene oxide.

키워드

참고문헌

  1. A. N. Collins, G. N. Sheldrake, and J. Crosby (1992), Chirality industry, pp1-66, John Wiley & Sons, New York
  2. A. Archelas and R. Furstoss (2001), Synthetic applications of epoxide hydrolases, Curr. Opin. Chem. Biol. 5, 112-119 https://doi.org/10.1016/S1367-5931(00)00179-4
  3. C. Morisseau, G. Venturi, P. Moussou, and J. C. Baratti (1998), Effect of carbon and nitrogen sources on the production of highly enantioselective epoxide hydrolase from Aspergillus niger, Biotechnol. Tech. 12, 805-809 https://doi.org/10.1023/A:1008891929478
  4. U. T. Strauss, U. Felfer, and K. Faber (1999), Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess, Tetrahedron Asymmetry 10, 107-117 https://doi.org/10.1016/S0957-4166(98)00490-X
  5. P. Besse and H. Veschambre (1994), Chemical and biological synthesis of chiral epoxides, Tetrahedron Asymmetry 50, 8885-8927 https://doi.org/10.1016/S0040-4020(01)85362-X
  6. H. Fu, G. J. Shen, and C. H. Wong (1991), Asymmetric epoxidation of allyl alcohol derivatives by omega-hydroxylase from Pseudomonas oleovorans, Recueil Trav. Chim. Pays Bas., 110, 167-170
  7. W. J. Choi, E. C. Huh, H. J. Park, E. Y. Lee, and C. Y. Choi (1998), Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis, Biotechnol. Tech. 12, 225-228 https://doi.org/10.1023/A:1008825508904
  8. J. Grigert, D. J. Dalietos, D. S. Hirano, T. D. Lee, and S. L. Neidleman (1986), Epoxidation of alkenes by chloroperoxidase catalysis, Biochem. Biophys. Res. Comm. 136, 778-782 https://doi.org/10.1016/0006-291X(86)90507-3
  9. Z. Liu, J. Michel, Z. Wang, B. Witholt, and Z. Li (2006), Enantioselective hydrolysis of styrene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200, Tetrahedron Asymmetry 17, 47-52 https://doi.org/10.1016/j.tetasy.2005.11.018
  10. C. A. Weijers, P. Meeuwse, R. L. Herpers, M. C. Franssen, and E. J. Sudholter (2005), Stereoselectivity and substrate specificity in the kinectic resolution of methyl-substituted 1-oxaspiro[2.5]octanes by Rhodotorula glutinis epoxide hydrolase, J. org. Chem. 70, 6639-6646 https://doi.org/10.1021/jo050533w
  11. S. J. Lee and H. S. Kim (2006), Development of recombinant Escherichia coli expressing Rhodotorula glutinis epoxide hydrolase, Korean Journal of Life Science 16, 415-419 https://doi.org/10.5352/JLS.2006.16.3.415
  12. E. Y. Lee, S. S. Yoo, H. S. Kim, S. J. Lee, Y. K. Oh, and M. S. Park (2004), Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis, Enzyme MicrobTechnol, 35, 624-631 https://doi.org/10.1016/j.enzmictec.2004.08.016
  13. G. L. C. Qing, A. Ma, G. V. T. Khorchid, T. K. Swapna, M. M. Mal, B. Takayama, S. Xia, H. Phadtare, T. Ke, G. T. Acton, M. Montelione, Ikura, and M. Inouye (2004), Cold-shock induced high-yield protein production in Escherichia coli, Nature Biotechnol 22, 877-882 https://doi.org/10.1038/nbt984
  14. K. M. Manoj, A. Archelas, J. Baratti, and R. Furstoss (2001), Microbiological transformations. Part 45: A green chemistry preparative scale synthesis of enantiopure building blocks of Eliprodil: elaboration of a high substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic resolution process, Tetrahedron Asymmetry 57, 695-701 https://doi.org/10.1016/S0040-4020(00)01032-2
  15. N. A. E. Kronenburg and J. A. M. de Bontn (2001), Effects of detergent of specific activity and enantioselectivity of the epoxide hydrolase from Rhodotorula glutinis, Enzyme Microb. Technol. 28, 210-217 https://doi.org/10.1016/S0141-0229(00)00306-9
  16. W. J. Choi, E. Y. Lee, S. J. Yoon, and C. Y. Choi (1999), Biocatalytic production of chiral epichlorohydrin in organic solvent, J. Biosci Bioeng. 88, 339-341 https://doi.org/10.1016/S1389-1723(00)80022-5
  17. J. H. Lee and E. Y. Lee (2004), Batch production of chiral epichlorohydrin by enantioselective hydrolase reaction using Rhodospridium toruloides, Kor. J. Biotechnol. Bioeng. 19, 38-41