Lipase 효소촉매에 의한 대두유의 가수분해

The Hydrolysis of Soybean Oil by Lipase Enzyme Catalyst

  • 이정태 (서울시립대학교 화학공학과) ;
  • 김의용 (서울시립대학교 화학공학과)
  • Lee, Jeong-Tae (Department of Chemical Engineering, University of Seoul) ;
  • Kim, Eui-Yong (Department of Chemical Engineering, University of Seoul)
  • 발행 : 2008.12.31

초록

원료물질인 대두유를 산가수분해하여 지방산의 함량을 분석한 결과 linoleic acid, oleic acid, palmitic acid, stearic acid의 함량순으로 분석되었다. 동일한 조건하에 대두유의 가수분해반응 전화율을 조사한 결과 Candida rugosa와 Candida cylindracea 에서 유래된 효소인 CR-E와 CC-E가 Lipase 16, Novozyme 871과 Lipolase-100 L보다 2배이상 높았다. 따라서 CR-E와 CC-E를 선정하여 반응조건에 대한 실험을 수행하였다. CR-E와 CC-E의 경우 비슷한 결과를 보여, pH $3{\sim}6$, $35-45^{\circ}C$, 물과 대두유의 중량비가 3.3 이상이었을 때가 최적인 반응조건이었으며 95% 이상의 높은 전화율을 나타내었다.

The hydrolysis reaction of soybean oil was conducted experimentally by various source enzymes. The analytical result of hydrolysate of soybean oil showed that the compositions were linoleic acid, olic acid, palmitic acid, and stearic acid in order. The enzymes CR-E and CC-E from Candida rufosa and Candida cylindracea had two hold or more hydrolysis conversions than those of Lipase 16, Novozyme 871, and Lipolase-100L under the same conditions. Therefore CR-E and CC-E were selected for further experiments. These two enzymes had similar ranges of optimun conditions as follows: pH 3-6, $35-45^{\circ}C$, and water to soybean oil ratio of 3.3 or above. They finally got conversions 95% above.

키워드

참고문헌

  1. http://www.arserrc.gov/techtrans/Technologies/Fats%20and%20Lipids /techwhey.htm
  2. Harry W. Lawson, (1985), Standards for fats & oils, 8, 825-827
  3. http://www.arserrc.gov/techtrans/Technologies/Fats%20and%20Lipids /techSplitting.htm
  4. http://www.fao.org/DOCREP/003/X6899E/X6899E03.htm
  5. Tahoun, M. K., M. F. El-Kadey, and A. A. Wahba, (1987), Hydrolysis of synthetic and natural triglycerides by an intracellular lipase from Aspergillus niger, FERR-WISS. Technol., 89, 261-263 https://doi.org/10.1002/lipi.19870890704
  6. http://www.au-kbc.org/beta/bioproj2/uses.html
  7. Yamamoto, K, and Fujiwara N., (1995), The Hydrolysis of Castor-oil Using a Lipase from Psedomonas sp, F-B-24 Positional and Substate- Specificity of the Enzyme and Optimum Reaction Condition, Biosci. Biotech. Bioch., 59, 1262-1266 https://doi.org/10.1271/bbb.59.1262
  8. Murty, V. Ramachandra Bhat, Jayadev Muniswaran, P. K. A. (2002), Hydrolysis of rice bran oil using immobilized lipase in a stirred batch reactor, Biotechnology and Bioprocess Engineering, 7, 367-370 https://doi.org/10.1007/BF02933523
  9. Taylor, F., M. J. Kurantz, and J. C. Craig, Jr, (1992), Kinetics of Continious Hydrolysis of Tallow in a Multi-Layered Flat-Plate Immobilized-Lipase Reactor, J. Am. Oil Chem. Soc., 69, 591-594 https://doi.org/10.1007/BF02636114
  10. Morrison, W. R. and L. M. Smith (1964), Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride- Methanol, J. Lipid Res., 5, 600-608
  11. Cahoon, E. B., E. F. Marrillia, K. L. Stecca, S. E. Hall, D. C. Taylor, and A. J. Kinney (2000), Production of fatty acids components of meadowfoam oil in somatic soybean embryos, Plant Physiology, 124, 243-251 https://doi.org/10.1104/pp.124.1.243
  12. Kinney, A. J. (1997), Genetic engineering of oilseeds for desired traits, In Genetic engineering Vol. 19, J. K. Setlow Ed., pp149-166, Plenum Press, New York