DOI QR코드

DOI QR Code

The Micro Bubble Effect in the Seed Adhesion on the Crystal Quality of 6H-SiC grown by a Physical Vapor Transport (PVT) Process

종자정 부착 시 생성되는 마이크로 기공이 PVT법에 의하여 성장시킨 6H-SiC 결정질에 미치는 영향

  • 김정곤 (동의대학교 신소재.나노공학과) ;
  • 김정규 (동의대학교 전자세라믹스센터) ;
  • 손창현 (동의대학교 나노공학과) ;
  • 최정우 (동의대학교 나노공학과) ;
  • 황현희 (동의대학교 나노공학과) ;
  • 이원재 (동의대학교 나노공학과) ;
  • 김일수 (동의대학교 나노공학과) ;
  • 신병철 (동의대학교 나노공학과)
  • Published : 2008.03.01

Abstract

With different seed adhesion methods, we obtained two different aspects with or without micro-bubble in the interface between a seed and a dense graphite seed holder. To improve the quality of SiC wafer, we introduced a sucrose caramelizing step at the seed adhesion using the sucrose, The n-type 2 inch single crystal exhibiting the polytype of 6H-SiC were successfully fabricated and carrier concentration levels of about $10^{16}/cm^3$ was determined from Hall measurements, As compared to the characteristics of SiC crystal grown with micro-bubble in the interface between the seed and the dense graphite seed holder, the SiC crystal grown without micro-bubble definitely exhibited lower resistivity, lower micropipe density and higher mobility relatively.

Keywords

References

  1. J. C. Zolper and M. Skowronski, "Advances in silicon carbide electronics", MRS Bulletin, Vol. 30, p. 273, 2005 https://doi.org/10.1557/mrs2005.73
  2. Z. Herro, M. Bickermann, B. M. Epelbaum, P. Masri, and A. Winnacker, "Effective increase of single-crystalline yield during PVT growth of SiC by tailoring of radial temperature gradient", Mater. Sci. Forum, Vol. 433-436, p. 67, 2003 https://doi.org/10.4028/www.scientific.net/MSF.433-436.67
  3. Y. Kitou, W. Bahng, T. Kato, S. Nishizawa, and K. Arai, "Flux-controlled sublimation growth by an inner guide-tube", Mater. Sci. Forum, Vol. 389-393, p. 83, 2002 https://doi.org/10.4028/www.scientific.net/MSF.389-393.83
  4. I. A. Zhmakin, A. V. Kulik, S. Yu. Karpov, S. E. Demina, M. S. Ramm, and Yu. N. Makarov, "Evolution of thermoelastic strain and dislocation density during sublimation gro wth of silicon carbide", Diamond and Related Materials, Vol. 9, p. 446, 2000 https://doi.org/10.1016/S0925-9635(99)00307-6
  5. E. K. Sanchez, T. Kuhr, D. Heydemann, W. Snyder, S. Rohrer, and M. Skowronski, "Formation of thermal decomposition cavities in physical vapor transport of silicon carbide", J. Electronic Materials, Vol. 29, p. 347, 2000 https://doi.org/10.1007/s11664-000-0075-7
  6. M. V. Bogdanov, A. O. Galyukov, S. Yu. Karpov, A. V. Kulik, S. K. Kochuguev, D. Kh. Ofengeim, A. V. Tsiryulnikov, M. S. Ramm, A. I. Zhmakin, and Yu. N. Makarov, "Virtual reactor as a new tool for modeling and optimization of SiC bulk crystal growth", J. Cryst. Growth, Vol. 225, p. 307, 2001 https://doi.org/10.1016/S0022-0248(01)00879-X
  7. J. G. Kim, K. R. Ku, D. J. Kim, S. P. Kim, W. J. Lee, B. C. Shin, G. H. Lee, and I. S. Kim, "SiC crystal growth by sublimation method with modification of crucible and insulation felt design", Mater. Sci. Forum, Vols. 483-485, p. 47, 2005 https://doi.org/10.4028/www.scientific.net/MSF.483-485.47
  8. K. R. Ku, J. G. Kim, J. D. Seo, J. Y. Lee, M. O. Kyun, W. J. Lee, G. H. Lee, I. S. Kim, and By P. C. Shin, "High quality SiC crystal grown physical vapor transport method with new crusible design", Mater. Sci. Forum, Vol. 527-529, p. 83, 2006 https://doi.org/10.4028/www.scientific.net/MSF.527-529.83
  9. X. Ma, "A method to determine superscrew dislocation structure in silicon carbide", Mater Sci and Eng B, Vol. 129, p. 216, 2006 https://doi.org/10.1016/j.mseb.2006.01.019
  10. E. Janzen, I. G. Ivanov, N. T. Son, B. Magnusson, Z. Zolnai1, A. Henry, J. P. Bergman, L. Storasta, and F. Carlsson, "Defects in SiC", Physica B, Vols. 340-342, p. 15, 2003 https://doi.org/10.1016/j.physb.2003.09.001