Abstract
Fall event detection is one of the most common problems for elderly people, especially those living alone because falls result in serious injuries such as joint dislocations, fractures, severe head injuries or even death. In order to prevent falls or fall-related injuries, several previous methods based on video sensor showed low fall detection rates in recent years. To improve this problem and outperform the system performance, this paper presented a novel approach for fall event detection in the elderly using a subtraction between successive difference images and temporal templates in real time environment. The proposed algorithm obtained the successful detection rate of 96.43% and the low false positive rate of 3.125% even though the low-quality video sequences are obtained by a USB PC camera sensor. The experimental results have shown very promising performance in terms of high detection rate and low false positive rate.
낙상이 탈골, 골절, 치명적인 머리 부상이나 심지어 죽음과 같은 심각한 결과를 초래하기 때문에 낙상 사건 검출은 특히 혼자 사는 노인들에 대해 가장 일반적인 문제들 중의 하나이다. 낙상이나 낙상과 관련된 부상들을 방지하기 위해서 최근 몇몇 기존 비디오 센서 기반의 방법들은 낮은 낙상 검출율을 보여주고 있다. 낮은 검출율 문제를 개선하고 시스템 성능을 높이기 위해, 본 논문은 실시간 환경에서 연속하는 차영상 간의 차와 시간적 템플릿(temporal templates)을 이용한 노인들에 대한 새로운 낙상 사건 검출 방법을 제시하였다. 제안된 알고리즘은 비록 한 대의 USB PC 카메라에 의해 획득된 낮은 질의 비디오 시퀀스임에도 불구하고 96.43%의 성공적인 검출율과 3.125%의 낮은 false positive rate를 얻었다. 실험 결과는 높은 검출율과 낮은 false positive rate에 관한 매우 기대되는 성능을 보여주고 있다.