DOI QR코드

DOI QR Code

The Roles of Amino and Carboxyl Domains in the Mouse Wee1 Kinases

생쥐 Wee1 인산화효소들의 각 도메인의 역할에 관한 연구

  • Han, Seung-Jin (School of Biotechnology and Biomedical Science, Inje University)
  • Published : 2008.01.31

Abstract

The molecular machinery controlling cell cycle is centered around the regulation of the activity of maturation-promoting factor (MPF), a complex composed of a catalytic Cdc2 and the cyclinB regulatory subunit. Cdc2 kinase is inactivated by phosphorylation of inhibitory kinase, Wee1. It has been known that there are three different Wee1 kinases in the mammalian cell, Wee1A, Wee1B and Myt1. To investigate the regulatory mechanism of Wee1 kinases, the phosphorylation and degradation of Wee1A and Wee1B were checked in the Xenopus oocyte cell cycle. When Wee1 kinases were injected into frog oocyte, Wee1B was more stable than Wee1A. Wee1A and Wee1B kinase were phosphorylated by many kinases such as PKA and Akt. The roles of amino or carboxyl terminal in mouse Wee1A or Wee1B kinase were investigated using chimeric constructs. The degree of protein phosphorylation, degradation and cell cycle progression were different between chimeric constructs. The amino domain of Wee1A was implicated in the protein phosphorylation and degradation while amino domain of Wee1B and carboxyl domain of Wee1A were involved in the activity regulation. These results suggested that the domains of Wee1 kinase have different and significant roles in regulating the Wee1 kinases in the cell cycle progression.

Wee1 인산화효소는 세포주기 조절의 핵심 단백질인 cdc2/cyclinB 복합체를 인산화하여 활성을 억제, 조절하는 주요한 효소이다. 지금까지 포유동물에서는 Wee1A, Wee1B 그리고 Myt1의 세 가지 효소가 발견되었다. Wee1 인산화효소의 조절기작을 연구하기 위하여 생쥐의 Wee1A와 Wee1B를 발톱개구리의 난자에 주사한 후 단백질의 변형을 관찰하였다. 이 세포주기 과정에서 두 효소는 모두 인산화 되었으며, Wee1A단백질은 분해되는 것을 관찰 할 수 있었다. 또한 세포외 인산화 방법을 통하여 Wee1A가 PKA와 Akt에 의해 인산화됨을 확인하였다. 이러한 Wee1 인산화효소의 인산화와 단백질 안정성에 영향을 미치는 단백질 내의 부위를 살펴보고자, Wee1A와 Wee1B의 아미노 도메인과 카르복실 도메인을 서로 치환한 단백질을 제조하여 개구리 난자에 주사하고 인산화 정도와 단백질의 안정성을 조사하였을 때, Wee1A의 아미노 도메인이 단백질의 인산화와 안정화에 중요한 영향을 미친다는 것을 규명하였다. 그리고 Wee1B의 아미노 도메인과 Wee1A의 카르복실 도메인은 효소의 활성을 조절하는 역할을 한다.

Keywords

References

  1. Choi, Y. H. and H. H. Choi. 2001. Significance of Cell Cycle and Checkpoint Control. J. life science. 11, 362-370.
  2. Fattaey, A. and R. N. Booher. 1997. Myt1: a Weel-type kinase that phosphorylates Cdc2 on residue Thr14. Prog. Cell Cycle Res. 3, 233-240.
  3. Han, S. J., R. Chen, M. P. Paronetto and M. Conti. 2005. Wee1B Is an Oocyte-Specific Kinase Involved in the Control of Meiotic Arrest in the Mouse. Curr. Biol. 15, 1670-1676. https://doi.org/10.1016/j.cub.2005.07.056
  4. Harvey, S. L., A. Charlet, W. Haas, S. P. Gygi and D. R. Kellogg. 2005. Cdkl-dependent regulation of the mitotic inhibitor Weel. Cell 122, 407-420. https://doi.org/10.1016/j.cell.2005.05.029
  5. Aldis, P., A. A. Russo, H. S. Chou, N. P. Pavletich andM. J. Solomon. 1998. Human and yeast cdk-activating kinases (CAKs) display distinct substrate specificities. Mol. Biol. Cell 9, 2545-2560. https://doi.org/10.1091/mbc.9.9.2545
  6. Keen, N. and S. Taylor. 2004. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer 4, 927-936. https://doi.org/10.1038/nrc1502
  7. Leise, W. and P. R. Mueller. 2002. Multiple Cdk1 inhibitory kinases regulate the cell cycle during development. Dev. Biol. 249, 156-173. https://doi.org/10.1006/dbio.2002.0743
  8. Morgan, D. O. 1995. Principles of CDK regulation. Nature 374, 131-134. https://doi.org/10.1038/374131a0
  9. Okumura, E. et al. 2002. Akt inhibits Mytl in the signalling pathway that leads to meiotic G2/M-phase transition. Nat. Cell Biol. 4, 111-116. https://doi.org/10.1038/ncb741
  10. Mueller, P. R, T. R Coleman, A. Kumagai and W. Dunphy. 1995. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270, 86-90. https://doi.org/10.1126/science.270.5233.86
  11. Nakanishi, M. et al. 2000. Identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. Genes Cells 5, 839-847. https://doi.org/10.1046/j.1365-2443.2000.00367.x
  12. Okamoto, K., N. Nakajo and N. Sagata. 2002. The existence of two distinct Weel isoforms in Xenopus: implications for the developmental regulation of the cell cycle. EMBO J. 21, 2472-2484. https://doi.org/10.1093/emboj/21.10.2472
  13. Parker, L. L. and H. Piwnica-Worms. 1992. Inactivation of the p34cdc2-cyclin B complex by the human WEEl tyrosine kinase. Science 257, 1955-1957. https://doi.org/10.1126/science.1384126
  14. Smith, J. J. et al. 2002. Apoptotic regulation by the Crk adapter protein mediated by interactions with Weel and Crml/exportin. Mol. Cell Biol. 22, 1412-1423. https://doi.org/10.1128/MCB.22.5.1412-1423.2002
  15. Watanabe, N. et al. 2004. M-phase kinases induce phosphodependent ubiquitination of somatic Weel by SCFbetaTrCP. Proc. Natl. Acad. Sci. U. S. A. 101, 4419-4424. https://doi.org/10.1073/pnas.0307700101
  16. Welchman R. L, C. Gordon and R. J. Mayer. 2005, Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599-609. https://doi.org/10.1038/nrm1700
  17. Wells, N. J. et al. 1999. The C-terminal domain of the Cdc2 inhibitory kinase Mytl interacts with Cdc2 complexes and is required for inhibition of G (2)/M progression. J. Cell Sci. 112, 3361-3371.