DOI QR코드

DOI QR Code

Isolation and Characterization of a Marine Derived Bacterium Glaciecola sp. SL-12 Producing β-agarase

한천분해효소를 생산하는 해양유래 세균 Glaciecola sp. SL-12의 분리 및 특성

  • Lee, Dong-Geun (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Lee, Ok-Hee (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Jang, Hyo-Jung (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Jang, Min-Kyung (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Yoo, Ki-Hwan (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Lee, Sang-Hyeon (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University)
  • 이동근 (신라대학교 의생명과학대학 제약공학과) ;
  • 이옥희 (신라대학교 의생명과학대학 제약공학과) ;
  • 장효정 (신라대학교 의생명과학대학 제약공학과) ;
  • 장민경 (신라대학교 의생명과학대학 제약공학과) ;
  • 유기환 (신라대학교 의생명과학대학 제약공학과) ;
  • 이상현 (신라대학교 의생명과학대학 제약공학과)
  • Published : 2008.01.31

Abstract

A novel agar-degrading bacterium SL-12 was isolated from seashore of Kijang at Busan, Korea, and cultured in marine broth 2216 media. Isolated bacterium SL-12 was identified as Glaciecola genus by 16S rDNA sequencing with 98% identity. The optimum pH of the enzyme activity was 7.0 and the optimum temperature for the reaction was $30^{\circ}C$. The enzyme hydrolyzed neoagarohexaose to yield neoagarobiose as the main product, indicating that the enzyme is ${\beta}$-agarase. Thus, isolated bacterium and the enzyme would be useful for the industrial production of neoagarobiose.

기능성 한천올리고당 생산에 사용할 수 있는 유전자원을 확보하기 위하여 동해안 기장 해수에서 한천분해활성을 보이는 해양유래 세균 SL-12를 분리하였으며 165 rDNA염기서열 분석으로 해양기원의 Glaciecola 속과 가장 유사한 균주임을 확인하였다. SL-12 균주가 생성하는 한천분해효소(agarase)의 최적 pH는 pH 7.0 (20 mM sodium phosphate 완충용액)이고 최적 온도는 $30^{\circ}C$로 나타났다. 분리 된 Glaciecola sp. SL-12 균주가 생산하는 한천분해효소의 분해산물에 대한 TLC 분석결과, 기능성 한천올리고당을 생산하는 ${\beta}$-agarase로 판명되어 산업적 활용 가능성이 높은 것으로 기대된다.

Keywords

References

  1. Araki, T., Z. Lu and T. Morishita. 1998. Optimization of parameters for isolation of pro top lasts from Gracilaria verrucosa (Rhodophyta). J. Marine Biotechnol. 6, 193-197.
  2. Do, J. H. 1997. Extraction and purification of agar from Gelidium amansii. J. Korean Fish. Soc. 30, 423-427.
  3. Duckworth, M. and W. Yaphe. 1970. Thin-layer chromatographic analysis of enzymic hydrolysate of agar. J. Chromatogr. 49, 482-487. https://doi.org/10.1016/S0021-9673(00)93663-X
  4. Duckworth, M. and W. Yaphe. 1971. Structure of agar. I. Fractionation of a complex mixture of polysaccharides. Carbo. Res. 16, 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  5. Groleau, D. W. and Yaphe. 1977. Enzymatic hydrolysis of agar: purification and characterization of $\beta$-neoagarotetraose hydrolase from Peudomonas atlantica. Can. J. Microbiol. 23, 672-679. https://doi.org/10.1139/m77-100
  6. Jean, W. D., W. Y. Shieh and T. Y. Liu. 2006. Glaciecola agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Glaciecola. Int. J. Syst. Evol. Micro. 56, 1245-1250. https://doi.org/10.1099/ijs.0.64130-0
  7. Joo, D. S., O. S. Kim, S. Y. Cho and C. H. Cho. 2003. Preparation condition of agar oligosaccharide with organic acids. J. Korean Fish. Soc. 36, 6-10.
  8. Kato, I. 2000. Antioxidative and antitumorigenic properties of agaro-oligosaccharide. Bio Industry 17, 13-19.
  9. Kim, B. J., S. H. Hwang, H. J. Kim, Y. S. Kang, S. D. Ha and J. Y. Kong. 1999. Characteristics of $\beta$-agarase produced by marine bacterium Bacillus cereus ASK202. Korean J. Biotechnol. Bioeng. 14, 96-102.
  10. Lee, D. G., N. Y. Kim, M. K. Jang and S. H. Lee. 2007. Isolation and characterization of a marine bacterium Thalassomonas sp. SL-5 producing $\beta$-agarase. J. Life Sci. 17, 70-75. https://doi.org/10.5352/JLS.2007.17.1.070
  11. Michaux, J. R., R. Libois, A. Davison, P. Chevret and R. Rosoux. 2004. Is the western population of the European mink, (Mustela lutreola), a distinct management unit for conservation?. Biol. Conserv. 115, 357-367. https://doi.org/10.1016/S0006-3207(03)00151-4
  12. Ohta, Y., Y. Hatada, M. Miyazaki, Y. Nogi, S. Ito and K. Horikoshi. 2005. Purification and characterization of a novel alpha-agarase from a Glaciecola sp. Curr. Microiol. 50, 212-216. https://doi.org/10.1007/s00284-004-4435-z
  13. Park, C. T., D. C. Lee, N. Y. Kim, E. J. Lee, J. C. Jung, J. H, Lee, M. S. Heo and S. H. Lee. 2005. Isolation and characterization of a marine bacterium producing thermotolerant agarase. J. Life Sci. 15, 884-888. https://doi.org/10.5352/JLS.2005.15.6.884
  14. Romanenko, L. A., N. V. Zhukova, M. Rohde, A. M. Lysenko, V. V. Mikhailov and E. Stachebrandt. 2003. Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int. J. Syst. Evol. Microbiol. 53, 647-651. https://doi.org/10.1099/ijs.0.02469-0
  15. Schafer, H, 2007. Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl. Environ. Microbiol. 73, 2580-2591. https://doi.org/10.1128/AEM.02074-06
  16. Sugano, Y., I. Terada, M. Arita, M. Noma and T. Matsumoto. 1993. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59, 1549-1554.
  17. Suzuki, H., Y. Sawai, T. Suzuki and K. Kawai. 2002. Purification and characterization of an extracellular $\alpha$-neoagarooligosaccharide hydrolase from Bacillus sp. MK03. J. Biosci. Bioeng. 93, 456-463. https://doi.org/10.1016/S1389-1723(02)80092-5
  18. Vera, J., R. Alvarez, E. Murano, J. C. Slebe and O. Leon. 1998. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Environ. Microbiol. 64, 4378-4383.
  19. Yamaura, I., T. Matsumoto, M. Funatsu, H. Shegeiri and T. Shibata. 1991. Purification and some properties of agarase from Pseudomonas sp. PT-5. Agricul. Biol. Chem. 55, 2531-2536. https://doi.org/10.1271/bbb1961.55.2531
  20. Yong, J. J., S. J. Park, H, J. Kim and S. K. Rhee. 2007. Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int. J. Syst. Evol. Microbiol. 57, 951-953. https://doi.org/10.1099/ijs.0.64723-0
  21. Yoshizawa, Y., A Ametani, J. Tsunehiro, K. Nomura, M. Itoh, F. Fukui and S. Kaminogawa. 1995. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structurefunction relationships and improved solubility. Biosci. Biotechnol. Biochem. 59, 1933-1939. https://doi.org/10.1271/bbb.59.1933

Cited by

  1. Characterization of Agarase from an Isolated Marine Bacterium, Simiduia sp. SH-1 vol.25, pp.11, 2015, https://doi.org/10.5352/JLS.2015.25.11.1273
  2. Characterization of β-agarase from Isolated Simiduia sp. SH-4 vol.26, pp.4, 2016, https://doi.org/10.5352/JLS.2016.26.4.453
  3. The Classification, Origin, Collection, Determination of Activity, Purification, Production, and Application of Agarases vol.22, pp.2, 2012, https://doi.org/10.5352/JLS.2012.22.2.266
  4. Isolation of a Marine-derived Flammeovirga sp. mbrc-1 Strain and Characterization of Its Agarase vol.26, pp.6, 2011, https://doi.org/10.7841/ksbbj.2011.26.6.552
  5. Cloning, Expression, and Characterization of a Novel GH-16 β-Agarase from Agarivorans sp. JA-1 vol.22, pp.11, 2012, https://doi.org/10.5352/JLS.2012.22.11.1545
  6. Characterization of Agarase Produced from the Isolated Marine Bacterium Marinomonas sp. SH-2 vol.26, pp.2, 2016, https://doi.org/10.5352/JLS.2016.26.2.198
  7. Characterization of α-agarase from Alteromonas sp. SH-1 vol.31, pp.2, 2016, https://doi.org/10.7841/ksbbj.2016.31.2.113