DOI QR코드

DOI QR Code

Design of Robust PI Controller for Vehicle Suspension System

  • Yeroglu, Celaleddin (Dept. of Electrical and Electronic Engineering, Inonu University, Turkey) ;
  • Tan, Nusret (Dept. of Electrical and Electronic Engineering, Inonu University, Turkey)
  • Published : 2008.03.01

Abstract

This paper deals with the design of a robust PI controller for a vehicle suspension system. A method, which is related to computation of all stabilizing PI controllers, is applied to the vehicle suspension system in order to obtain optimum control between passenger comfort and driving performance. The PI controller parameters are calculated by plotting the stability boundary locus in the $(k_p,\;k_i)$-plane and illustrative results are presented. In reality, like all physical systems, the vehicle suspension system parameters contain uncertainty. Thus, the proposed method is also used to compute all the parameters of a PI controller that stabilize a vehicle suspension system with uncertain parameters.

Keywords

References

  1. K. Matsumoto, K. Yamashita and M. Suzuki, 'Robust H$\infty$ -output feedback control of decoupled automobile active suspension system', IEEE Trans. on Automat. Contr., vol. 44, pp. 392-396, 1999 https://doi.org/10.1109/9.746274
  2. Elmadany, M., 'Integral and state variable feedback controllers for improved performance in automotive vehicles', Comput Struct., vol. 42, no. 2, pp. 237-244, 1992 https://doi.org/10.1016/0045-7949(92)90207-G
  3. Isobe, T. and O. Watanabe, 'New semi-active suspension controller design using quasi-linearlization and frequency shaping', Control Eng. Pract., vol. 6, pp. 1183-1191, 1998 https://doi.org/10.1016/S0967-0661(98)00070-7
  4. D'Amato, F.J. and D.E. Viassolo, 'Fuzzy control for active suspension', Mechatronics, vol. 10, pp. 897-920, 2000 https://doi.org/10.1016/S0957-4158(99)00079-3
  5. Kim H.J, H.S. Yaug and Y.P. Park, 'Improving the vehicle performance with active suspension using road-sensing algorithm', Computers and Structure; vol. 80, pp. 1569-1577, 2002 https://doi.org/10.1016/S0045-7949(02)00110-4
  6. Spentzas K. and A.K. Stratis 'Design of a non-linear hybrid car suspension system using neural network', Mathematics and Computers in Simulation, vol. 60, pp. 369-378, 2002 https://doi.org/10.1016/S0378-4754(02)00029-0
  7. Yao, G. Z., F. F. Yap, G. Chen, W. H. Li and S. H. Yeo, 'MR damper and its application for semi-active control of vehicle suspension system', Mechatronics, vol. 12, pp. 963-973, 2002 https://doi.org/10.1016/S0957-4158(01)00032-0
  8. Kuo Y. P. and T. H. S. Li, 'GA-Based Fuzzy PI/PID Controller for Automotive Active Suspension System', IEEE Transactions on Industrial Electronics, vol. 46, pp. 1051-1056, December 1999 https://doi.org/10.1109/41.807984
  9. Onat C., I. B. Kucukdemirel, S. Cetin and I. Yuksek, 'A comparison study of robust control strategies for autmotive active suspension systems (H$\infty$, LQR, Fuzzy Logic Control)', International Symposium on Innovations in Inteligent Systems and Applications, Istanbul-Turkey, pp. 291-294, 15-18 June 2005
  10. Zhuang, M. and D. P. Atherton, 'Automatic tuning of optimum PID controllers,' IEE Proc. Part D, vol. 140, pp. 216-224, 1993
  11. Astrom, K. J. and T. Hagglund, PID Controllers: Theory, Design, and Tuning. Instrument Society of America, 1995
  12. Ho, M. T., A. Datta and S. P. Bhattacharyya, 'A new approach to feedback stabilization,' Proc. of the 35th CDC, pp. 4643-4648, 1996
  13. Ho, M. T., A. Datta and S. P. Bhattacharyya, 'A linear programming characterization of all stabilizing PID controllers,' Proc. of Amer. Contr. Conf., 1997
  14. Ho, M. T., A. Datta and S. P. Bhattacharyya, 'Design of P, PI, and PID controllers for interval plants,' Proc. of Amer. Contr. Conf., Philadelphia, June 1998
  15. N. Tan, I. Kaya, C. Yeroglu and D. P. Atherton 'Computation of stabilizing PI and PID controllers using the stability boundary locus', Energy Conversion and Management, vol. 47, pp. 3045-3058, 2006 https://doi.org/10.1016/j.enconman.2006.03.022
  16. Soylemez, M. T., N. Munro and H. Baki, 'Fast calculation of stabilizing PID controllers,' Automatica, vol. 39, pp. 121-126, 2003 https://doi.org/10.1016/S0005-1098(02)00180-2
  17. Ackermann, J. and D. Kaesbauer, 'Design of robust PID controllers,' European Control Conference, pp. 522-527, 2001
  18. Shafiei, Z. and A. T. Shenton, 'Frequency domain design of PID controllers for stable and unstable systems with time delay,' Automatica, vol. 33, pp. 2223-2232, 1997 https://doi.org/10.1016/S0005-1098(97)00148-9
  19. Huang, Y. J. and Y. J. Wang, 'Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem,' ISA Transactions, vol. 39, pp. 419-431, 2000 https://doi.org/10.1016/S0019-0578(00)00026-4
  20. Kharitonov, V. L., 'Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,' Differential Equations, vol. 14, pp. 1483-1485, 1979
  21. Barmish, B. R., C. V. Holot, F. J. Kraus and R. Tempo, 'Extreme points results for robust stabilization of interval plants with first order compensators,' IEEE Trans. on Automat. Contr., vol. 38, pp. 1734-1735, 1993 https://doi.org/10.1109/9.262052
  22. Franklin, G.F., J.D. Powell and A. E. Naeini., 'Feedback Control of Dynamic Systems', Prentice Hall, N.J., 2002

Cited by

  1. Robust controller design for First order Plus Time Delay systems using Kharitonov Theorem vol.47, pp.1, 2014, https://doi.org/10.3182/20140313-3-IN-3024.00103
  2. Comparison of Robust Control Techniques for Use in Continuous Stirred Tank Reactor Control vol.48, pp.14, 2015, https://doi.org/10.1016/j.ifacol.2015.09.471
  3. Identification, uncertainty modeling and robust controller design for an electromechanical actuator vol.230, pp.20, 2016, https://doi.org/10.1177/0954406215616141