Journal of Electrical Engineering & Technology, Vol. 3, No. 1, pp. 125~129, 2008 125

Handling a Multi-Tasking Environment via
the Dynamic Search Genetic Algorithm

S. P. Koh*, I. B. Aris**, S. M. Bashi** and K. H. Chong***

Abstract — A new genetic algorithm for the solution of a multi-tasking problem is presented in this
paper. The approach introduces innovative genetic operation that guides the genetic algorithm more
directly towards better quality of the population. A wide variety of standard genetic parameters are
explored, and results allow the comparison of performance for cases both with and without the new
operator. The proposed algorithm improves the convergence speed by reducing the number of
generations required to identify a near-optimal solution, significantly reducing the convergence time in

each instance.

Keywords: Artificial Intelligence, Genetic Algorithm, Multi-Tasking

1. Introduction

The optimization of a sequencing operation of a
machine is to minimize the total motion time of its
manipulators along their paths. The evolutionary
algorithm is used to obtain the motion plans in the multi-
tasking environment. Global optimization algorithms
imitating certain principles of nature such as simulated
annealing and the field of evolutionary algorithms have
proven to be useful tools for the optimization of high
dimensional and highly nonlinear problems. Ref. [1]
explains why the evolutionary algorithm (EA) performs
an effective search compared to other methods. The EA
presents a continual improvement using pair selection and
mutation, working as a local search where the mutation
operator slightly modifies a solution. If this new solution
is better than previous ones, it will be accepted with high
probability by the selection mechanism. On the other
hand, the pair selection and crossover avoids the process
being trapped in a local minimum, executing an
intelligent jump to another search space region.

2. System Setup
In this research, the following three major components

would be developed: simulation package, hardware of a
dual-beam optical scanner, and artificial intelligent

* College of Engineering, Universiti Tenaga Nasional, Malaysia.

(johnnykoh@uniten.edu.my)

Faculty of Engineering, Universiti Putra Malaysia, Malaysia.

(ishak@eng.upm.edu.my, senan@eng.upm.edu.my)

*** Dept. of Physic and Science, Universiti Tunku Abdul Rahman,
Malaysia. (chongkh@mail.utar.edu.my)

Received 26 February, 2007 ; Accepted 2 July, 2007

* %

system. The simulation package consists of a graphical
user interface where it links and directs the flow of the
working process. It is a medium to allow interaction
between the hardware, control system, artificial
intelligent, and database. In this simulation package, the
input data would be stored and learned in the database.
The data from the database can be extracted to be
processed and executed via the hardware. For this
research, a dual-beam optical scanner has been designed
and developed in order to test the functionality of the
proposed artificial intelligent algorithm. An evolutionary
solution has been chosen to optimize the performance and
solve the dual-beam scanning problem. This algorithm
would segregate the task of both scanner heads and allow
the multi-tasking system to operate in synchronization.
System integration of both hardware and software of the
dual-beam scanning module is illustrated in Fig. 1.

Database,
GUI and Al

Program

Optical
Scanner

Dual- r’\\——]
Beam Laser

Work-Piece

II

Control Panel

Fig. 1. System set-up

126 Handling a Multi-Tasking Environment via the Dynamic Search Genetic Algorithm

3. GA Optimization

A complete implementation of a GA needs to encompass
the following major components:

i. Means of obtaining an initial population of solutions.

ii. Means of encoding solutions to the problem as integer
chromosomes as used in the proposed system.

iii. Means of evaluation and fitness assignment of solutions
in the solution pool.

iv. A selection procedure for individual solutions meeting
the specified objective for reproduction into the next
generation,

v. Reproduction operators for the encoded solutions.

vi. Appropriate settings for GA control parameters.

Some other important concepts would be needed in
implementing a robust and efficient algorithm such as
reinsertion, genetic drift, elitism, fitness sharing, mating
viability and restrictions, and mutation rates.

A nodal-combinatorial problem is designed and tested
using the following GA methods, namely:

i. Generational Replacement Genetic Algorithm (GRGA)

ii. Steady State Genetic Algorithm (SSGA)

iii. Standard Hybrid Genetic Algorithm (SHGA)

iv. Dynamic Search Genetic Algorithm (DSGA).
Comparison results are made and processing speed is

rated in terms of number of generations required with

different standard specifications.

3.1 Generational Replacement Genetic Algorithm

In GRGA, the entire population is simultaneously
replaced by an equal number of offspring. The hope is that
the offspring of the best strings carry the important
building blocks from the best string forward to the next
generation. The parents and offspring are not to live in the
same population, and each population becomes the next
generation. This replacement strategy is known as
generational replacement and GAs based on this process
are said to use non-overlapping populations as shown in
Fig. 2.

FIN A A o 728 45 87, N
g a4e T 485 T
111 4|5 4] 1 5 5 slal 4l 114 |- 1
5141 5| 1] 5] 5 1 4 GA 1[5 55 54 1 1
37171 3 7] 3] 3] | 2|Overations | 3 3l 7/ 2| 3] 7] 3 7
IEEEEEE 227227 |2
2729 | E> 31 73] 3| 7] 3] 2 3|:>
6 ¢| 8] 810/10 8 8 8| 6] 9 610! 9] o 10
10 8/ 9} ¢ 8 9[10 9 s|10[10, o 6 8| 8| |
a[10010] 8| 9| 8 6 8 10] 8] 810/ 9| 5 6 8
gl sl 6[10 8/ 8l 9 [10 8 9 6| 8| sl10[10] | ¢

Non-Overlapping Generations

Fig. 2. GRGA concept

A Y B A S | AN AN B ¥
TEEEERE 1 NERENEE T
IKEEERE 5 1114 5, 4] 1] 4 4
5 415 11551 A GA HEEREE N 1
NRIREEIRE 2| Operations | 3| 7| 71 3) 71 7| 3 7
nayasan | 7 N3 327 ?
120240272 3 E> 1202172032 3
6l 9 8| 6[10110] 8 | 8 6] 9] 8| 810 98 10
10 8 9] 9] B 910 9 10 8/ 99 6 8 8 i
9110[10] 8| 9| 6| 6 b H10110] 8 & Bl 6] | 8
8 6 610 8 8] 8] |10] 8 6] 610] 8{10[10] | 9]

Overlapping

Chromosomes

Fig. 3. SSGA concept
3.2 Steady-State Genetic Algorithm

A common variation of the generational process is some
form of elitism strategy, which ensures the survival of
highly fit members from one generation to the next at the
expense of an equal number of poorly fit offspring. This
process ensures that the algorithm does not forget the best
that it found so far, and it helps in speeding-up the
convergence.

Naturally, there is also interest in GAs where offspring
have the chance to survive in the same generation and
compete with at least some of their parents. A more recent
development in GA theory is the use of overlapping
populations in SSGA [2]. In every generation, only a few
individuals are produced by recombination and mutation
operators. These new individuals are then evaluated, and
possibly reinserted into the population, replacing:

i. Random members of the parental population

ii. The oldest member of the parental population
iii. Their own parents

iv. The least fit member of the parental population.

This process is illustrated in Fig. 3. This algorithm has a
built-in elitism since only the lowest ranked individuals are
deleted while the best are automatically kept in the
population. The percentage of the replaced individuals, i.e.
overlap amount, makes the difference between the
generational and the incremental GAs. At one extreme, a
nearly 100% overlap is obtained by replacing one or two
individuals at each generation. At the other extreme, the
steady-state GA becomes a simple generational GA if the
entire population is replaced, i.e. 0% overlap.

3.3 Standard and Dynamic Search GA

Literature has stated that real-parameter crossover
operators are able to produce exploration or exploitation
depending on the way in which they handle the current
diversity of population [3]. Exploration will generate
additional diversity starting from the current chromosomes

S. P Koh, I B. Aris, S. M. Bashi and K. H. Chong 127

Table 1. GA Simulation Parameters

SHGA/DSGA Simulation Parameter | Value

Max. Generations Allowed 4000
Population, p, 50

Selection Method RW

Crossover Rate, p, 0.80

Mutation Rate, p,, 0.05

Mutation Point, m, 2

No. of Best Chromosomes Kept, &, 1

Crossover Type Fixed/Adaptive
Number of Simulation 10

and exploitation will create improved elements from the
diversity [4]. Thus, an adaptive dynamic crossover operator
is proposed in DSGA. Contradictory to conventional
standard GAs where the size of crossover region is fixed
throughout the crossover process, the size of crossover
region in the DSGA is dynamically changed towards
optimality, exploring at the early generations and
exploiting at the latter generations. The GA parameters are
set as in Table 1.

4. Experimental Results

In this section, the proposed Dynamic Search Genetic
Algorithm (DSGA) has been studied and benchmarked
with the conventional and standard GA, namely; GRGA,
SSGA and SHGA. The advantages of DSGA in terms of its
convergence time and quality of solutions have been
discussed.

4.1 GRGA Experimental Results

A test has been conducted to examine whether the
GRGA is able to reach good quality solutions. Fig. 4 plots
the average and best results from ten different experiments
to optimize a twenty-node scanning task, but each time
employing purely random genetic parameter values,

1-Fit1ness

L
200 400 600 200 1000 1200 1400 1600

Generation
Best

Fig. 4. Average and best cost using GRGA

------- Average

population size, chromosome length, and stopping criteria.
It is observed that the algorithm indeed optimizes the cost
and that the rate in which improvements are introduced is
impressive.

4.2 SSGA Experimental Results

SSGA was more robust and showed a tendency to
converge after less than 500 generations. As shown in Fig.
5, in conjunction with uniform crossover and mutation, the
SSGA reached a near optimal solution with a cost of 0.15,
which represents a 51.0 % improvement compared to the
initial cost, a 3.0 % improvement over the GRGA. This is
mainly due to an enforced diversity and small population
strategies. After crossover, members of the population were
compared, and any duplicate members would be mutated.
It is found that about 30% of the chromosomes are
identical to another in the population. Since duplicate
members do not improve the solution, they can be removed.
As a result, diversity leading to better solutions is
maintained and the algorithm is prevented from premature
convergence. It is found that there was no significant
difference between wusing either different crossover
operators or crossover probabilities.

1- Fithess

200 400 BOO 800 1000 1200 1400 1800

Generation

AvErage

Fig. 5. Average and best cost using SSGA
4.3 SHGA Experimental Results

Genetic drift is the culprit that causes a GA to fail to find
only a single solution at a time, and cause over-
specialization [5]. In order to reduce the effect of genetic
drift, attention has been turned to speciation “niching”
techniques, which have been developed and tested against
GRGA and SSGA. First, results that were obtained by
applying SHGA with standard test parameters
outperformed both the GRGA and SSGA in terms of
solution quality and convergence time. Out of ten trials, the
SHGA reached an optimal solution within 500 generations
as shown in Fig. 6.

128 Handling a Multi-Tasking Environment via the Dynamic Search Genetic Algorithm

1- Fitness
1

08

06

04

0.2

100 200 300 400 500 80O 700 800

Generation

Average

Fig. 6. Average and best cost using SHGA

4.4 DSGA Experimental Results

Convergence rate is used as the main criteria to compare
the efficiency of DSGA and SHGA in obtaining a solution
for dual-beam scanning. Fig. 7 presents the convergence
rate comparison of different optimization techniques. Ten
simulations were run and the best result of every
optimization was obtained. The best fitness function value
for the simulation scenario was calculated manually and
used as a benchmark, which is indicated as “ideal” for the
simulation. It can be found that DSGA converged faster
compared to SHGA as it converged to ideal fitness function
value at the range of 400 generations. However, SHGA can
only converge to the ideal value at the range of 500
generations. Also, it can be seen that most of the fitness
function values with SHGA are more than 0.4. However,
most of the fitness function values with DSGA are less
than 0.4. This indicates that the convergence rate of DSGA
is faster than that for SHGA.

1 - Fitness

100 200 300 400 500 600 700 800

Generation

Average
Fig. 7. Average and best cost using DSGA
5. Conclusions

The experiment has reviewed GA and related design
formulations extensively and has developed and tested

numerous alternative GA based implementations. The
possibilities of using GRGA, SSGA, SHGA, and DSGA to
solve the optimization problems were investigated. SHGA
attempts to improve the solution quality or at least prevent
premature convergence problems. DSGA has been
proposed inheriting new adaptive crossover GA operators.
It is believed to better sample the search space, improve its
exploitation power and find good quality solutions.
Solutions obtained using DSGA have surpassed those
obtained using GRGA, SSGA, and SHGA.

References

[11 Goldberg, D. E., “The Design of Innovation: Lessons
From Genetic Algorithms, Lessons for the Real
World,” Internal Report 98004, Illinois Genetic
Algorithms Laboratory, Department of General
Engineering, University of Illinois at Urbana-
Champaign, [llinois, 1997.

[2] Whitley D., “4 Genetic Algorithm Tutorial,”
Technical Report (CS-93-103, Colorado State
University, 1993.

[3] Herrera, F., Lozano, M., and Sanchez, A. M., “Hybrid
Crossover Operators for Real-Coded Genetic
Algorithms,” An Experimental Study, Department of
Computer Science and Artificial Intelligence,
University of Granada, 18071, Granada, Spain. 2003.

[4] Beyer, H. G. and Deb, K., “On self-Adaptive Features
In Real-Parameter Evolutionary Algorithms,” TEEE
Transactions on Evolutionary Computation 5(3), 2001.
pp. 250-270, 2001.

[5] Darwen P., Yao X., “4 Dilemma for Fitness Sharing
with a Scaling Function,” In Proceeding of 1EEE
Conference on Evolutionary Computation, pp. 166-
171, 1995.

S. P. Koh

He received his B.Eng (Hons) in
Electronics and Electrical, and his
M.Sc from the Universiti Putra
Malaysia in Control and Automation.
His research interests include Artificial
Intelligence, Lasers, Advanced
Mechatronics, and Control Systems.

S. P. Koh, I B. Aris, S. M. Bashi and K. H. Chong 129

Ishak Bin Aris

He received his B.Sc in Electrical
Engineering from the George
Washington University, USA in 1988.
He also received his M.Sc and Ph.D. in
Power Electronics Engineering from
the University of Bradford, United
Kingdom in 1991 and 1995, respectively. His areas of
interest include power electronics and drive system,
robotics, artificial intelligence, and automotive electronics.

S. M. Bashi

He graduated from the University of
Mosul in Electrical and Electronics
Engineering (1969). He received his

Ph.D. in Simulation of Power
Transmission Systems from
,,,,, Loughborough University of

Technology, England (1980). His areas of research interest
include power system analysis and design, quality of power
supply, simulation and application of power electronics
systems, and machine drives.

K. H. Chong

He received his B. Eng (Hons) in
Electronics and Electrical, and his M.
Sc from the Universiti Putra Malaysia
in Electrical and Electronic
Engineering respectively. His current
research interests include artificial
intelligence and industrial process control.

