DOI QR코드

DOI QR Code

Active and Reactive Power Control Model of Superconducting Magnetic Energy Storage (SMES) for the Improvement of Power System Stability

  • Ham, Wan-Kyun (Transmission Operation Planning, Northeast Utilities Service Co.) ;
  • Hwang, Sung-Wook (Dept. of Electrical and Electronic Engineering, Hongik University) ;
  • Kim, Jung-Hoon (Dept. of Electrical and Electronic Engineering, Hongik University)
  • Published : 2008.03.01

Abstract

Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device. Furthermore, an optimal priority scheme is proposed for the combination of active and reactive power control to be able to stabilize power transient swings.

Keywords

References

  1. Byung M. Han, George G. Karady, 'A New Power-Conditioning System for Superconducting Magnetic Energy Storage', IEEE Transactions on Energy Conversion, Vol. 8, No. 2, Jun. 1993
  2. Byung M. Han, George G. Karady, 'New Combined Power-Conditioning System for Superconducting Magnetic Energy Storage', Electric Power System Research 37, pp. 79-85, 1996 https://doi.org/10.1016/0378-7796(96)01038-3
  3. G. G. Karady, B. M. Han, 'A New Power Supply for Superconductive Magnetic Energy Storage System', IEEE Transactions on Energy Conversion, Vol. 7, No. 1, Mar. 1992
  4. H. A. Peterson, N. Mohan, R. W. Boom, 'Superconductive Energy Storage Inductor-Converter Units for Power Systems', IEEE Transactions on Power Apparatus and Systems, Vol. PAS-94, No. 4, Jul./Aug. 1995
  5. H. J. Boening, J. F. Hauer, 'Commissioning Tests of the Bonneville Power Administration 30MJ Superconducting Magnetic Energy Storage Unit', IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, No. 2, Feb. 1985
  6. H. Shirahama, Y. Sakurai, Y. Matsuda, Y. Ishigaki, K. Murai, 'Instantaneous Control Method with a GTO Converter for Active and Reactive Power in Superconducting Magnetic Energy Storage', IEEE Transactions on Power Electronics, Vol. 9, No. 1, Jan. 1994 https://doi.org/10.1109/59.331461
  7. I. J. Iglesias, J. Acero, 'Comparative Study and Simulation of Optimal Converter Topologies for SMES Systems', IEEE Transactions on Applied Superconductivity, Vol. 5, No. 2, Jun. 1995
  8. J. Machowski, D. Nells, 'Optimal Control of Superconducting Magnetic Energy Storage Unit', Electric Machines and Power Systems 20, pp. 623-640, 1992 https://doi.org/10.1080/07313569208909624
  9. Korea Electric Power Cooperation (KEPCO) Research Center, Apr. 1988. 'A Study on Superconducting Magnetic Energy Storage.' KRC-84S-T05
  10. Q. Jiang, M. F. Conlon, 'The Power Regulation of a PWM Type Superconducting Magnetic Energy Storage Unit', IEEE Transactions on Energy Conversion, Vol. 11, No. 1, Mar. 1996
  11. Q. Jiang, Y. Yang, M. F. Conlon, 'The Design of P-Q Controllers for a PWM Type Superconducting Magnetic Energy Storage Unit', IEEE International Conference on Industrial Technology, Dec. 5-9, 1994
  12. S. Banergee, J. K. Chatterjee, S. C. Tripathy, 'Application of Magnetic Energy Storage Unit as Continuous Var Controller', IEEE Transactions on Energy Conversion, Vol. 5, No. 1, Mar. 1990
  13. S. Funabiki, T. Fujii, 'Fuzzy Control of SMES for Leveling Load Power Fluctuation Based on Lukasiewicz Logic', IEE Proceedings-C, Vol. 140, No. 2, Mar. 1993
  14. T. Ise, Y. Murakami, K. Tsuji, 'Charging and Discharging Characteristics of SMES with Active Filter in Transmission System', IEEE Transactions on Magnetics, Vol. Mag-23, No. 2. Mar. 1987
  15. T. Ise, Y. Murakami, K. Tsuji, 'Simultaneous Active and Reactive Power Control of Superconducting Magnet Energy Storage Using GTO Converter', IEEE Transactions on Power Delivery, Vol. PWRD-1, No. 1. Jan. 1986
  16. T. Matsuo, Y. Shirakawa, H. Tsuruda, H. Okada, T. Ezaki, 'Robust Transient Stabilizer for Power Systems with Superconducting Magnetic Energy Storage Unit', 1996 IEEE $22^nd$ International Conference on Industrial Electronics, Control, and Instrumentation, V3, 1996
  17. T. Shintomi, M. Masuda, T. Ishikawa, S. Akita, T. Tanaka, H. Kaminosono, 'Experimental Study of Power System Stabilization by Superconducting Magnetic Energy Storage', IEEE Transactions on Magnetics, Vol. Mag-19, No. 3, May 1983
  18. T. Tominaga, O. Takashiba, M. Shibazaki, H. Fujita, M. Goto, H. Hasegawa, K. Tsuchiya, Y. Ishigaki, H. Toita, 'Power Control Experiments using A PWM GTO Thyristor Converter in a 1MJ Superconducting Magnetic Energy Storage System', 1989 IEEE Industry Appliances Society Annual Meeting, San Diego, 1989
  19. Arthur R. Bergen, Power System Analysis, Prentice-Hall, New Jersey, 1986
  20. EPRI TR - 102004, May 1994. 'Extended Transient-Midterm Stability Program (ETMSP).' EPRI
  21. P. Kundur, 1994. Power System Stability and Control, McGraw-Hill, New York
  22. Wan Kyun Ham, May. 2003. 'Superconducting Magnetic Energy Storage (SMES) Control Models for the Improvement of Power System Stability.' Ph.D. Dissertation, University of Texas
  23. Korea Electrical Engineering & Science Research Institute (KESRI), 'A Study on Optimal Size Determination and Application Technology of Superconducting Machine and Device to Power System', 1998

Cited by

  1. A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support vol.83, 2016, https://doi.org/10.1016/j.ijepes.2016.04.037
  2. The Optimum Design for Magnetic Flux Distribution of a Superconducting Flywheel Energy Storage System vol.19, pp.3, 2009, https://doi.org/10.1109/TASC.2009.2019144
  3. Role of smectite-rich shales in frequent foundation failures in southeast Nigeria vol.125, pp.6, 2016, https://doi.org/10.1007/s12040-016-0727-5