Chemical Compositions and Antioxidant Activity of the Colored Rice Cultivars

유색미의 화학적성분 및 항산화활성

  • Kim, Eun-Ok (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Oh, Ji-Hae (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Lee, Kee-Taek (Department of Food Science and Technology, Chungnam National University) ;
  • Im, Jung-Gyo (Department of Confectionary Decoration, Daegu Mirae College) ;
  • Kim, Sung-Soo (School of Biological Resources, College of Natural Resources, Yeungnam University) ;
  • Suh, Hak-Soo (school of Biological Resources, College of Natural Resources, Yeungnam University) ;
  • Choi, Sang-Won (Department of Food Science and Nutrition, Catholic University of Daegu)
  • 김은옥 (대구가톨릭대학교 식품영양학과) ;
  • 오지혜 (대구가톨릭대학교 식품영양학과) ;
  • 이기택 (충남대학교 식품공학과) ;
  • 임정교 (대구미래대학 제과데코레이션과) ;
  • 김성수 (영남대학교 자연자원대학 생물자원학부) ;
  • 서학수 (영남대학교 자연자원대학 생물자원학부) ;
  • 최상원 (대구가톨릭대학교 식품영양학과)
  • Published : 2008.02.28

Abstract

The chemical compositions and antioxidant activities of four different colored rice cultivars (white-colored rice: WCR, brown-colored rice: BCR, brown-colored waxy rice: BCWR, black-colored rice: BKCR) were investigated to evaluate the quality characteristics of the new brown rice cultivars. There was no significant differences in chemical compositions amongst the four rice cultivars, although WCR had higher amount of carbohydrate than did the other rice cultivars. 'The major fatty acids in the four rice cultivars were linoleic, oleic and palmitic acids, which accounted for about 96% of total fatty acids. Of note, higher amounts of saturated fatty acids (24.8%) and lower amount of unsaturated fatty acids (75.2%) were observed in BKCR than in the other rice cultivars. Two brown-colored rice cultivars, BCR and BCWR, possessed higher amounts of linoleic acid (40.8% and 42.1%, respectively) than did the other cultivars. The highest level of ${\alpha}$-tocopherol was found in WCR (51.3mg%), followed by BKCR (38.6mg%), BCWR (37.2 mg%), and BCR (34.5mg%). Free amino acid analysis showed that aspartic and glutamic acids were major amino acids of all cultivars, whereas phenylalanine, lysine, and histidine were minor. Particularly, relatively higher contents of aspartic and glutamic acids were found in BKCR, while relatively higher levels of alanine and ${\gamma}$-aminobutyric acid (GABA) were observed in BCR and BCWR. Also, BKCR had the highest phenolic content and antioxidant activity of any cultivar, followed by the two brown-colored rice cultivars and WCR. These results suggested that the new brown rice cultivars may possess quality characteristics intermediate between those of WCR and BCR.

신품종 갈색미를 이용한 다양한 가공식품을 개발하기 위한 연구의 일환으로 먼저 갈색미의 품질 특성을 평가하기 위해 4가지 쌀 품종(백색미, 갈색메벼, 갈색찰벼 및 흑미)의 화학적성분 및 항산화활성을 측정하고 비교 검토한 결과는 다음과 같다. 새로 육종된 갈색메벼 및 갈색찰벼의 일반성분은 대체적으로 백색미와 흑미의 중간 함량을 나타내는 경향이었다. 지방산 중 palmitic, oleic 및 linoleic acids 함량이 거의 96% 이상 차지하고 있었으며, 백색미, 갈색메벼 및 갈색찰벼는 linoleic acid > oleic acid > palmitic acid 순으로, 반면, 흑미는 oleic acid > linoleic acid > palmitic acid순으로 함량이 낮았다. 백색미의 ${\alpah}$-tocopherol 함량은 51.3mg%(건물 중)이었으나 갈색메벼 및 찰벼는 각각 34.5 및 37.2 mg%, 그리고 흑미는 38.6 mg%로서 백색미보다 유색미의 함량이 낯은 경향을 나타내었다. 다음, 유리아미노산 중 glutamic 및 aspartic acids와 같은 산성아미노산의 함량이 가장 높았으며, 흑미는 백색미보다 그 함량이 훨씬 높은 반면, alanine, proline 및 valine은 백색미보다 낮았으며, GABA 함량은 약간 높았다. 한편, 4가지 쌀 품종중 흑미(2.54 %, 건물중)의 수용성페놀 함량이 가장 높았으며, 그 다음으로 갈색찰벼(1.09%) > 갈색메벼(0.69%) > 백색미(0.49%), 순으로 감소하였다. 그리고 흑미는 가장 강한 $DPPH(IC_{50}=90.04{\mu}g/mL)$, superoxide $(IC_{50}=199.92{\mu}g/mL)$ 및 hydroxyl $(IC_{50}=420.73{\mu}g/mL)$ 라디칼 포착활성을 나타내었으며, 그 다음으로 갈색메벼 > 갈색찰벼 > 백색미, 순으로 감소하는 경향을 나타내었다. 이상의 결과로부터 새로 육종된 신품종 갈색메벼 및 갈색찰벼는 대체적으로 백색미와 흑미의 중간적 화학적 품질 특성 및 항산화활성을 나타내었다. 이러한 결과를 미루어 볼 때 새로 육종된 갈색미는 흑미와 함께 향후 기능성 쌀로 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Korea Rural Economic Institute. (2002) Production and management of high quality rice, p.35
  2. Chae, J.C. (2004) Present situation, research and prospect of rice quality and bioactivity in Korea. Food Sci. Indus., 37, 47-54
  3. Ministry of Agricultural and Forestry (2003) Agricultural and Forestry Statistical Yearbook. National Agricultural Products Quality Management Service (NAQS) of the Ministry of Agriculture and Forestry (MAF)
  4. National Institute Crop Science. (2004) http://www.nics.go.kr
  5. Juliano, B.O. (1994) Polysaccharides, proteins, and lipids of rice, pp. 59-174. In: Rice: Chemistry and Technology. Juliano, B.O.(ed.). The American Association of Cereal Chemists, Inc., St. Paul, Minnesota, USA
  6. Choi, O.K., Yun, S.K. and Hwang, S.Y. (2000) The chemical components of Korean rice germ. Korean J. Dietary Culture, 15, 253-258
  7. Nakayama, S., Manabe, A., Suzuki, J., Sakamoto, K. and Inagake, T. (1987) Comparative effects of two forms of ${\gamma}$-oryzanol in different sterol compositions on hyperlipidemia induced by cholesterol. Japan J. Pharmacol., 44, 135-143 https://doi.org/10.1254/jjp.44.135
  8. Lichenstein, A.H., Ausman, L.M., Carrasco, W., Gualtieri, L.J., Jenner, J.L., Ordovas, J.M., Nicolosi, R.J., Goldin, B.R. and Schaefer, E.J. (1994) Rice bran oil consumption and plasma lipid levels in moderately hypercholesterolemic humans. Arterioscler. Thromb., 14, 549-555 https://doi.org/10.1161/01.ATV.14.4.549
  9. Kawabata, K., Tanaka, T., Murakami, T., Okada, T., Murai, H., Yamamoto, T., Hara, A., Shimizu, M., Yamada, Y., Matsunaga, K., Kuno, T., Yoshimi, N., Sugie, S. and Mori, H. (1999) Dietary prevention of azoxymethane-induced colon carcinogenesis with rice germ in F344 rats. Carcinogenesis, 20, 2109-2115 https://doi.org/10.1093/carcin/20.11.2109
  10. McCaskill, D.R. and Zhang, F. (1999) Use of rice bran oil in foods. Food Technol., 53, 50-52
  11. Qureshi, A.A., Mo, H., Packer, L. and Peterson, D.M. (2000) Isolation and identification of novel tocotrienols from rice bran with hypercholemic, antioxidant, and antitumor properties. J. Agric. Food Chem., 48, 3130-3140 https://doi.org/10.1021/jf000099t
  12. Saikusa, T., Horino, T. and Mori, Y. (1994) Accumulation of ${\gamma}$-aminobutyric acid (GABA) in the rice germ during water soaking. Biosci. Biotech. Biochem., 58, 2291-2292 https://doi.org/10.1271/bbb.58.2291
  13. Okada, T., Sugishita, T., Murakami, T., Mura,i H., Saikusa, T., Horino, T., Onoda, A., Kajimoto, D., Takahashi, R. and Takahashi, T. (2000) Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Nippon Shokuhin Kagaku Kogaku Kaishi, 47, 596-603 https://doi.org/10.3136/nskkk.47.596
  14. Kum, J.S., Choi, B.K., Lee, H.Y., Park, J.D. and Park, H.J. (2004) Physiochemical properties of germinated brown rice. Korean J. Food Preserv., 11, 182-188
  15. Lioyd, B.J., Siebenmorgen, T.J. and Beers, K.W. (2000) Effects of commercial processing on antioxidants in rice bran. Cereal Chem., 77, 551-555 https://doi.org/10.1094/CCHEM.2000.77.5.551
  16. Kim, I.H., Kim, C.J., You, J.M., Lee, K.W., Kim, C.T., Chung, S.H. and Tae, B.S. (2002) Effect of roasting temperature and time on the chemical composition of rice germ oil. J. Am. Oil Chem. Soc., 79, 413-418 https://doi.org/10.1007/s11746-002-0498-2
  17. Kadlec, P., Kaasova, J. and Bubnik, Z. (2003) Chemical and physicochemical changes during microwave treatment of rice. Food Sci. Biotechnol., 12, 219-223
  18. Yoon, S.H. and Kim, S.K. (2004) Physicochemical properties of rice differing in milling degrees. Food Sci. Biotechnol., 13, 57-62
  19. Food code(additives). (2002) Proximate analysis method, Food Development Administration, Moonyoung Press, Seoul, p.3-36
  20. Kwon, Y.J., Lee, K.T., Yun, T.M. and Choi, S.W. (2004) Effect of heat pretreatment on the functional constituents of rice germ. J. Food Sci. Nutr., 9, 330-352 https://doi.org/10.3746/jfn.2004.9.4.330
  21. Singleton, V.L. and Rossi, J.A. (1965) Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144-158
  22. Kwon, Y.J., Rhee, S.J., Chu, J.W. and Choi, S.W. (2005) Comparison of radical scavenging activity of extracts of mulberry juice and cake prepared from Mulberry (Morus spp.) fruit. J. Food Sci. Nutr., 10, 111-117 https://doi.org/10.3746/jfn.2005.10.2.111
  23. Son, J.R., Kum, J.H., Lee, M.H., Jung, J.H. and Oh, M.J.. (1996) Chemical properties and fatty acid composition of layers of rice grain. J. Korean Soc. Food Sci. Nutr., 25, 497-503
  24. Food composition table(Sixth Revision) (2001) National Rural Living Science Insititute, R.D.A., Sangroksa
  25. Choe, J.S., Ahn, H.H. and Nam, H.J. (2002) Comparison of nutritional compositions in Korean rices. J. Korean Soc. Food Sci. Nutr., 31, 885-892 https://doi.org/10.3746/jkfn.2002.31.5.885
  26. Kim, I.H., Kim, C.J., You, J.M., Lee, K.W., Kim, C.T., Chung, S.H. and Tae, B.S. (2002) Effect of roasting temperature and time on the chemical composition of rice germ oil. J. Am. Oil Chem. Soc., 79, 413-418 https://doi.org/10.1007/s11746-002-0498-2
  27. Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onoda, A., Kajimoto, O., Takahashi, R. and Takahashi, T. (2000) Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Nippon Shokuhin Kagaku Kaishi, 47, 596-603 https://doi.org/10.3136/nskkk.47.596
  28. Kim, M.S., Jeong, J.I. and Jeong, Y.H. (2003) Amino acid composition of milled and brown rices. J. Korean Soc. Food Sci. Nutr., 32, 1385-1389 https://doi.org/10.3746/jkfn.2003.32.8.1385
  29. Tsuda, T., Watanabe, M., Ohshima, K., Norinobu, S., Choi, S.W., Kawakishi, S. and Osawa, T. (1994) Antioxidative activity of the anthocyanin pigments cyanidin 3-O-${\beta}$- D-glucoside and cyanidin. J. Agric. Food Chem., 42, 2407-2410 https://doi.org/10.1021/jf00047a009
  30. Chung, Y.A. and Lee, J.K. (2003) Antioxidative properties of phenolic compounds extracted from black rice. J. Korean Soc. Food Sci. Nutr., 32, 948-951 https://doi.org/10.3746/jkfn.2003.32.6.948