DOI QR코드

DOI QR Code

Failure Probability of Nonlinear SDOF System Subject to Scaled and Spectrum Matched Input Ground Motion Models

배율조정 및 스펙트럼 맞춤 입력지반운동 모델에 대한 비선형 단자유도 시스템의 파손확률

  • 김동석 (서울대학교 건설환경공학부) ;
  • 고현무 (서울대학교 건설환경공학부) ;
  • 최창열 (서울대학교 건설환경공학부) ;
  • 박원석 (서울대학교 교량설계핵심기술연구단)
  • Published : 2008.02.29

Abstract

In probabilistic seismic analysis of nonlinear structural system, dynamic analysis is performed to obtain the distribution of the response estimate using input ground motion time histories which correspond to a given seismic hazard level. This study investigates the differences in the distribution of the responses and the failure probability according to input ground motion models. Two types of input ground motion models are considered: real earthquake records scaled to specified intensity level and artificial input ground motion fitted to design response spectrum. Simulation results fir a nonlinear SDOF system demonstrate that the spectrum matched input ground motion produces larger failure probability than those of scaled input ground motion due to biased responses. Such tendency is more remarkable in the site of soft soil conditions. Analysis results show that such difference of failure probability is due to the conservative estimation of design response spectrum in the range of long period of ground motion.

비선형 구조계의 확률론적 지진해석 방법 중 대표적인 것은 지진 재해도 수준에 해당하는 입력지반운동 모델을 사용한 시간이력을 수행하여 그 응답의 확률분포를 예측하는 것이다. 이 연구에서는 널리 사용되고 있는 두 가지 입력지반운동 모델에 따른 구조계 응답의 분포특성 및 파손확률의 차이와 그 원인을 분석한다 입력지반운동 모델로는 실제 지진기록을 배율 조정하여 사용하는 배율조정 입력지반운동과 설계 응답스펙트럼에 상응하는 인공 지진기록을 사용하는 스펙트럼 맞춤 입력지반운동 두 가지를 고려한다. 동일한 지진재해도 수준을 고려한 해석결과 설계 응답스펙트럼에 상응하는 인공 지진기록을 사용한 입력지반운동 모델은 실제 지진기록을 배율 조정한 입력지반운동 모델보다 평균적으로 응답을 크게 평가하였고 이로 인해 파손확률 또한 더 큰 것으로 나타났다 이러한 경향은 연약한 지반에서 더욱 현저한 것으로 나타났다. 이러한 입력지반운동 모델에 따른 파손확률의 차이는 스펙트럼 맞춤 입력지반운동의 목표로 사용된 도로교 설계기준의 설계 응답스펙트럼이 실제 지진기록의 응답스펙트럼보다 장주기로 갈수록 응답을 크게 평가하도록 보수적으로 만들어졌기 때문인 것으로 나타났다.

Keywords

References

  1. Kunnath, S.K., Larson, L. and Miranda, E., "Modelling consideration in probabilistic performance-based seismic evaluation: case study of the I-880 viaduct", Earthquake Engineering and Structural Dynamics, Vol. 35, No. 1, 2002, pp. 57-75 https://doi.org/10.1002/eqe.531
  2. Choi, E., DesRoches, R. and Nielson, B., "Seismic fragility of typical bridges in moderate seismic zones", Engineering Structures, Vol. 26, 2004, pp. 187-199 https://doi.org/10.1016/j.engstruct.2003.09.006
  3. 김동석, 최현석, 박원석, 고현무, "에너지 소산장치를 장착한 사장교의 지진 취약도 해석", 한국지진공학회 논문집, 제 10권 제 3호, 2006, pp. 1-11 https://doi.org/10.5000/EESK.2006.10.3.001
  4. Bertero, R.D. and Bertero, V.V., "Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach", Earthquake Engineering and Structural Dynamics, Vol. 31, No. 3, 2002, pp. 627-652 https://doi.org/10.1002/eqe.146
  5. Foschi, R.O., Li, H. and Zhang, J., "Reliability and performance-based design: a computational approach and applications," Structural Safety, Vol. 24, 2002, pp. 205-18 https://doi.org/10.1016/S0167-4730(02)00025-5
  6. Chandler, A.M. and Lam, N.T.K., "Performance-based design in earthquake engineering: a multi-disciplinary review", Engineering Structures, Vol. 23, 2001, pp. 1525-1543 https://doi.org/10.1016/S0141-0296(01)00070-0
  7. Mackie, K. and Stojadinovic, B., "Seismic demands for performance-based design of bridges", Pacific Earthquake Engineering Research Center, Univ. of California Berkeley, PEER Report, 2003
  8. Bazzurro, P. and Luco, N., "Do scaled and spectrum matched near-source records produced biased nonlinear structural response?", proceeding of the 8th U. S. National Conference on Earthquake Engineering, San Francisco, USA, paper No. 1029, 2006
  9. Shantz, T.J., "Selection and scaling of earthquake records for nonlinear dynamic analysis of first mode dominate bridge structures", proceeding of the 8th U. S. national conference on earthquake engineering, San Francisco, USA, paper No. 1012, 2006
  10. Naeim, F., Alimoradi, A. and Pezeshk, S., "Selection and scaling of ground motion time histories for structural design using genetic algorithms", Earthquake Spectra, Vol. 20, No. 2, 2004, pp. 413-429 https://doi.org/10.1193/1.1719028
  11. Baker, J.W. and Cornell, C.A., "A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon", Journal of Earthquake Engineering and Structural Dynamics, Vol. 34, 2005, pp. 1193-1217 https://doi.org/10.1002/eqe.474
  12. Dimova, S.L. and Elenas, A., "Seismic intensity parameters for fragility analysis of structures with energy dissipating devices", Structural Safety, Vol. 24, 2002, pp. 1-28 https://doi.org/10.1016/S0167-4730(01)00024-8
  13. Kurama, Y.C., and Farrow, K.T., "Ground motion scaling methods for different site conditions and structural characteristics", Earthquake Engineering and Structural Dynamics, Vol. 32, No. 15, 2003, pp. 2425-2450 https://doi.org/10.1002/eqe.335
  14. Shome N. and Cornell C.A., "Normalization and scaling accelerograms for nonlinear structural analysis", 6-th U.S. National Conference on Earthquake Engineering, Seattle, WA, 1998. (CD-ROM)
  15. Shome N., Cornell C.A., Bazzurro P. and Carballo J.E., "Earthquakes, records, and nonlinear responses", Earthquake Spectra, Vol. 14, 1998, pp. 469-500 https://doi.org/10.1193/1.1586011
  16. Silva, W.J. and Lee, K., "WES RASCAL Code for Synthesizing Earthquake Ground Motions", State-of-the-Art for Assessing Earthquake Hazards in the United States, US Army Corps of Engineers, Report 24, 1987
  17. Abrahamson, N.A., "Non-stationary spectral matching program RSPMATCH", PG&E Internal Report, 1993
  18. Gasparini, D.A. and Vanmarcke, E.H., "Simulated earthquake motions Compatible with prescribed response spectra", Department of Civil Engineering, Massachusetts Institute of Technology, Publication No. 76-4. 1976
  19. Shinozuka, M. and Deodatis, G., "Simulation of stochastic processes by spectral representation", Applied Mechanics reviews, Vol. 44, No. 4, 1991, pp. 191-204 https://doi.org/10.1115/1.3119501
  20. 고현무, 송준호, "사용기간비용 최소화에 의한 지진격리교량의 경제성 평가", 대한토목학회논문집, 제 19권, 제 1-4호, 1999, pp. 539-550
  21. Carballo, J.E., and Cornell, C.A., "Probabilistic seismic demand analysis: Spectrum matching and design", Department of Civil and Environmental Engineering, Reliability of Marine Structures Program, Stanford University, Stanford, California, Report No. RMS-41, 2000
  22. Watson-Lamprey, J.A. and Abrahamson, N.A., "Bias caused by use of spectrum compatible motions", proceeding of the 8th U.S. National Conference on Earthquake Engineering, San Francisco, USA, paper No. 909, 2006
  23. AASHTO, Standard specifications for highway bridges, Fifteenth Edition, The American Association of State Highway and Transportation Officials, Washington, D.C., 2002
  24. PEER strong motion database, Pacific Earthquake Engineering Research Center, http://peer.berkeley.edu/smcat/
  25. Aslani, H. and Miranda, E., "Probability-based seismic response analysis", Engineering Structures, Vol. 27, 2005, pp. 1151-1163 https://doi.org/10.1016/j.engstruct.2005.02.015
  26. Baker, J.W. and Cornell, C.A., "Spectral shape, epsilon and record selection", Journal of Earthquake Engineering and Structural Dynamics, Vol. 35, 2006, pp. 1077-1095 https://doi.org/10.1002/eqe.571